理論試題

 $[I^{\mathsf{T}} C^{\mathsf{T}}_{\mathsf{I}} h^{\mathsf{T}}_{\mathsf{I}} O]$

51st — International Chemistry Olympiad France — Paris — 2019

一起玩科學!

2019-07-26

MINISTÈRE DE L'ÉDUCATION NATIONALE ET DE LA JEUNESSE

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE ET DE L'INNOVATION

說明

- 本理論試題共有63頁。
- 聽到 Start (開始) 命令,立即開始作答。
- 作答時間共5小時。
- 所有的答案必須**用筆清楚地在指定答案區內作答**。書寫在答案區之外的答案,均不計分。
- 可以利用考卷背面計算。但須謹記,寫在答案區之外的答案,均不計分。
- 僅可使用大會所提供的筆和計算機。
- 為了釐清題意,可以要求提供官方英文版試題本供你參考。
- 若你需要離開考場(例如: 吃點心或上廁所), 請舉起對應的 IChO 卡片, 監試人員會來陪伴你。
- 選擇題修改答案請注意:選擇題勾錯要取消,必須把要取消的那個選項框框塗滿,然後在旁邊畫一個空方框。
- 在 Stop(停止) 命令前的 30 分鐘,監試人員將會提醒你。
- 當 **Stop** 命令宣布時,必須立即停止作答。若繼續作答超過半分鐘,將 導致你的理論測驗成績無效。
- **Stop** 命令宣布後,將你的試題本放回信封袋內,坐在座位上等候,監試 人員會在你的面前封好並收走。

祝考試順利!

目錄

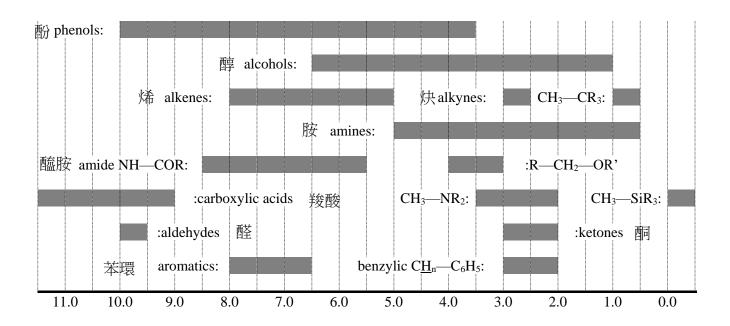
本卷共有9大題,配分與頁碼如下:

問題 T1:丁二烯(butadiene)與無窮高位能井模型	(6%)	p. 8
問題 T2: 水裂解成氫	(7%)	p.13
問題 T3:關於氯化銀	(5%)	p.20
問題 T4:從火藥中發現碘	(7%)	p.25
問題 T5:Azobenzene -β-cyclodextrin (偶氮苯-β-環糊精)錯合物可用於奈米機器	(8%)	p.31
問題 T6:團聯共聚物(block-copolymer)之鑑定	(8%)	p.40
問題 T7: 在[2]交環烷([2]catenane)的環之運動	(6%)	p.48
問題 T8:肌醇(inositols)的鑑定與合成	(6%)	p.53
問題 T9:左旋布比卡因(levobuvacaine)的合成	(7%)	p.58

常數與公式

這些實驗中,我們假設水溶液所有物質的活性(有效濃度)與其濃度(以 mol L^{-1} 表示)相當接近。為了簡化公式,標準濃度 c^0 = 1 mol L^{-1} 在此被省略了。

亞佛加厥常數 Avogadro's constant: $R = 8.314 \mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1}$ 經用集體常數 Universal gas constant: $R = 8.314 \mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1}$ 標準壓力 Standard pressure: $P^{\circ} = 1 \mathrm{bar} = 10^5 \mathrm{Pa}$ 大氣壓力 Atmospheric pressure: $P_{\mathrm{atm}} = 1 \mathrm{atm} = 1.013 \mathrm{bar} = 1.013 \cdot 10^5 \mathrm{Pa}$ 攝氏零度 Zero of the Celsius scale: $273.15 \mathrm{K}$ 法拉第常數 Faraday constant: $1 \mathrm{W} = 1 \mathrm{J} \mathrm{s}^{-1}$ $1 \mathrm{W} = 1 \mathrm{J} \mathrm{s}^{-1}$ $1 \mathrm{J} \mathrm{s}^{-1}$ $1 \mathrm{W} = 1 \mathrm{J} \mathrm{s}^{-1}$ $1 \mathrm{W} = 1 \mathrm{J} \mathrm{s}^{-1}$ $1 \mathrm{J} \mathrm{s}^{-1}$ $1 \mathrm{W} = 1 \mathrm{J} \mathrm{s}^{-1}$ $1 \mathrm{W} = 1 \mathrm{J} \mathrm{s}^{-1}$ $1 \mathrm{W} = 1 \mathrm{J} \mathrm{s}^{-1}$ $1 \mathrm{J} \mathrm{J} $		
標準壓力 Standard pressure: $p^{\circ}=1 \text{ bar}=10^{5} \text{ Pa}$ 大氣壓力 Atmospheric pressure: $P_{\text{atm}}=1 \text{ atm}=1.013 \text{ bar}=1.013 \cdot 10^{5} \text{ Pa}$ 攝氏零度 Zero of the Celsius scale: 273.15 K 法拉第常數 Faraday constant: $F=9.6485 \cdot 10^{4} \text{ C mol}^{-1}$ 瓦特 Watt: $1 \text{ W}=1 \text{ J s}^{-1}$ $1 \text{ kWh}=3.6 \cdot 10^{6} \text{ J}$ $1 \text{ kWh}=3.6 \cdot 10^{6} $	亞佛加厥常數 Avogadro's constant:	$N_{\rm A} = 6.022 \cdot 10^{23} \rm mol^{-1}$
大氣壓力 Atmospheric pressure: REWE Zero of the Celsius scale: 法拉第常數 Faraday constant: END Watt: TED WHE Kilowatt hour: TED WHE KILOWATT AND AGAGNATION TO THE AGAG	通用氣體常數 Universal gas constant:	$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
攝氏零度 Zero of the Celsius scale: 273.15 K 法拉第常數 Faraday constant: $F = 9.6485 \cdot 10^4 \text{ C mol}^{-1}$ 瓦特 Watt: $1 \text{ W} = 1 \text{ J s}^{-1}$ $1 \text{ KW} = 3.6 \cdot 10^6 \text{ J}$ $1 \text{ kW} = 3.6 \cdot 10^6 \text{ J}$ $1 \text{ kW} = 3.6 \cdot 10^6 \text{ J}$ $1 \text{ kW} = 3.6 \cdot 10^6 \text{ J}$ $1 \text{ kW} = 3.6 \cdot 10^{-34} \text{ J} \text{ s}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ kW} = 3.6 \cdot 10^{-34} \text{ J}$ 1 s $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ C}$ $1 \text{ geren} = 1.6022 \cdot 10^{-19} \text{ G}$ $1 \text{ geren} = 1.6022 \cdot $	標準壓力 Standard pressure:	$p^{\circ} = 1 \text{ bar} = 10^{5} \text{ Pa}$
法拉第常數 Faraday constant: $F = 9.6485 \cdot 10^4 \text{ C mol}^{-1}$ 瓦特 Watt: $1 \text{ W} = 1 \text{ J s}^{-1}$ 千瓦小時 Kilowatt hour: $1 \text{ kWh} = 3.6 \cdot 10^6 \text{ J}$ 普朗克常數 Planck constant: $h = 6.6261 \cdot 10^{-34} \text{ J s}$ 真空中的光速 Speed of light in vacuum: $c = 2.998 \cdot 10^8 \text{ m s}^{-1}$ 基本電荷 Elementary charge: $e = 1.6022 \cdot 10^{-19} \text{ C}$ 電功率 Electrical power: $P = \Delta E \times I$ 電態效率 Power efficiency: $p = \Delta E \times I$ 電態效率 Power efficiency: $p = \Delta E \times I$ 電態效率 Power efficiency: $p = \Delta E \times I$ 電影效率 Power efficiency: $p = \Delta E \times I$ 電影效率 Power efficiency: $p = \Delta E \times I$ 電影效率 Power efficiency: $p = \Delta E \times I$ $G = H - TS$ $\Delta G^{\circ} = -RT \ln K^{\circ}$ $\Delta G^{\circ} = -R$	大氣壓力 Atmospheric pressure:	$P_{\text{atm}} = 1 \text{ atm} = 1.013 \text{ bar} = 1.013 \cdot 10^5 \text{ Pa}$
瓦特 Watt:	攝氏零度 Zero of the Celsius scale:	273.15 K
一五小時 Kilowatt hour: $1 \text{ kWh} = 3.6 \cdot 10^6 \text{ J}$	法拉第常數 Faraday constant:	$F = 9.6485 \cdot 10^4 \mathrm{C \ mol^{-1}}$
曹朗克常數 Planck constant: $h = 6.6261 \cdot 10^{-34} \mathrm{J} \mathrm{s}$ 真空中的光速 Speed of light in vacuum: $c = 2.998 \cdot 10^8 \mathrm{m s^{-1}}$ 基本電荷 Elementary charge: $e = 1.6022 \cdot 10^{-19} \mathrm{C}$ 電功率 Electrical power: $P = \Delta E \times I$ 電能效率 Power efficiency: $\eta = P_{\mathrm{obtained}} P_{\mathrm{applied}}$ 普朗克-愛因斯坦關係式 Planck-Einstein relation: $E = hc/\lambda = h \nu$ 理想氣體方程式 Ideal gas equation: $pV = nRT$ $G = H - TS$ $\Delta_t G^\circ = -RT \ln K^\circ$ 古布斯自由能 Gibbs free energy: $\Delta_t G^\circ = -nF E_{\mathrm{cell}}^\circ$ D反應 $a A(aq) + b B(aq) = c C(aq) + d D(aq)$ $Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$ 財際應務 Reaction quotient Q for a reaction $Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$ 中田 $PK_a + \log \frac{[A^-]}{[AH]}$ $PH = pK_a + \log \frac{[A^-]}{[AH]}$ 完斯特方程式, Q 為還原半反應的反應商 $E = E^\circ - \frac{RT}{2F} \ln Q$ Nernst-Peterson equation: where Q is the reaction quotient of the reduction half-reaction $E = E^\circ - \frac{RT}{2F} \ln Q$ 中国定律 Beer-Lambert law: $A = \varepsilon lc$ 反應速率積分式 Rate laws in integrated form: $A = \varepsilon lc$ 零級反應- Zero order: $A = \varepsilon lc$ 一級反應- First order: $A = \varepsilon lc$	瓦特 Watt:	$1 \text{ W} = 1 \text{ J s}^{-1}$
真空中的光速 Speed of light in vacuum: $c = 2.998 \cdot 10^8 \text{ m s}^{-1}$ 基本電荷 Elementary charge: $e = 1.6022 \cdot 10^{-19} \text{ C}$ 電功率 Electrical power: $P = \Delta E \times I$ 電能效率 Power efficiency: $\eta = P_{\text{obtained}}/P_{\text{applied}}$ 普朗克-爱因斯坦關係式 Planck-Einstein relation: $E = hc/\lambda = h \nu$ 理想氣體方程式 Ideal gas equation: $PV = nRT$ $G = H - TS$ $\Delta_t G^\circ = -RT \ln K^\circ$ $\Delta_t G^\circ = -RT \ln K^\circ$ $\Delta_t G^\circ = -RT \ln Q$ $\nabla E = A \text{ (aq)} + b \text{ B(aq)} = c \text{ C(aq)} + d \text{ D(aq)}$ 的反應商 Reaction quotient Q for a reaction $\Phi = \frac{[C]^c[D]^d}{[A]^a[B]^b}$ 早中 $E = \frac{[A]^c}{[AH]}$ 完斯特方程式, Q 為還原半反應的反應商 Nernst-Peterson equation: where Q is the reaction quotient of the reduction half-reaction $\Phi = \frac{[A]^c}{[AH]}$ 是 $E = E^\circ - \frac{RT}{2F} \ln Q$ at $T = 298 \text{ K}$, $\frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 比爾定律 Beer-Lambert law: $\Phi = \frac{[A] = [A]_0 - kt}{[A] = [A]_0 - kt}$ 一級反應- First order: $\Phi = \frac{[A] = [A]_0 - kt}{[A] = 1/[A]_0 - kt}$ 一級反應- Second order: $\frac{[A] = [A]_0 - kt}{[A] = 1/[A]_0 + kt}$ $H = \frac{[A]^c}{k}$ 數目平均算且質量 Number average molar mass M_0 : $\Phi = \frac{[A] = [A]_0 - kt}{[A] = 1/[A]_0 + kt}$	千瓦小時 Kilowatt hour:	$1 \text{ kWh} = 3.6 \cdot 10^6 \text{ J}$
基本電荷 Elementary charge: $e=1.6022\cdot 10^{-19}\mathrm{C}$ 電功率 Electrical power: $P=\Delta E \times I$ 電能效率 Power efficiency: $\eta=P_{\mathrm{obtained}}/P_{\mathrm{applied}}$ 普朗克-爱因斯坦關係式 Planck-Einstein relation: $E=hc\lambda=h\nu$ 理想氣體方程式 Ideal gas equation: $PV=nRT$ $G=H-TS$ $\Delta_tG^\circ=-RT\ln K^\circ$ $\Delta_tG^\circ=-nFE_{\mathrm{cell}}^\circ$ $\Delta_tG=\Delta_tG^\circ+RT\ln Q$ $\nabla E a \ A(\mathrm{aq})+b \ B(\mathrm{aq})=c \ C(\mathrm{aq})+d \ D(\mathrm{aq})$ 的反應商 Reaction quotient Q for a reaction $Q=\frac{[C]^\circ[\mathrm{D}]^\mathrm{d}}{[\mathrm{A}]^\mathrm{a}[\mathrm{B}]^\mathrm{b}}$ 章權德森方程式 Henderson—Hasselbalch equation: $pH=pK_\mathrm{a}+\log\frac{[\mathrm{A}^-]}{[\mathrm{A}]^\mathrm{d}}$ $pH=pK_\mathrm{a}+\log\frac{[\mathrm{A}^-]}{[\mathrm{A}]^\mathrm{d}}$ $x=298\mathrm{K}, \frac{RT}{F}\ln 10\approx 0.059\mathrm{V}$ $x=210\mathrm{K}$ $x=298\mathrm{K}, \frac{RT}{F}\ln 10\approx 0.059\mathrm{V}$ $x=210\mathrm{K}$ $x=210\mathrm$	普朗克常數 Planck constant:	$h = 6.6261 \cdot 10^{-34} \text{ J s}$
電功率 Electrical power: 電能效率 Power efficiency: 普朗克-爱因斯坦關係式 Planck-Einstein relation: 理想氣體方程式 Ideal gas equation: $P = AE \times I$ 理想氣體方程式 Ideal gas equation: $P = nRT$ $G = H - TS$ $A_rG^\circ = -RT \ln K^\circ$ $A_rG = -n F E_{cell}^\circ$ $A_rG = A_rG^\circ + RT \ln Q$ 反應 a A(aq) + b B(aq) = c C(aq) + d D(aq) 的反應商 Reaction quotient Q for a reaction $Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$ 韓德森方程式 Henderson—Hasselbalch equation: 常報 Pobtained/Papplied $P = AE \times I$ $P = \Delta E \times I$ $P = OAE \times I$ $A = E C \wedge I = I$ $A_r = C \cap I = I$ $A = E \cap$	真空中的光速 Speed of light in vacuum:	
電能效率 Power efficiency: $\eta = P_{\text{obtained}}/P_{\text{applied}}$ 普朗克-愛因斯坦關係式 Planck-Einstein relation: $E = hc/\lambda = h \nu$ 理想氣體方程式 Ideal gas equation: $pV = nRT$	基本電荷 Elementary charge:	$e = 1.6022 \cdot 10^{-19} \mathrm{C}$
普朗克-愛因斯坦關係式 Planck-Einstein relation: $E = hc/\lambda = h \nu$ 理想氣體方程式 Ideal gas equation: $pV = nRT$	電功率 Electrical power:	$P = \Delta E \times I$
理想氣體方程式 Ideal gas equation: $pV = nRT$ $G = H - TS$ $\Delta_r G^\circ = -RT \ln K^\circ$ $\Delta_r G = -n F E_{cell}^\circ$ $A = E E^\circ$ $E = E^\circ$ $A = E E^\circ$ $E = E^\circ$ $A = E E^\circ$ $E = E^\circ$ $E =$	電能效率 Power efficiency:	$\eta = P_{ m obtained}/P_{ m applied}$
吉布斯自由能 Gibbs free energy: $G = H - TS$ $\Delta_r G^\circ = -RT \ln K^\circ$ $\Delta_r G = \Delta_r G^\circ + RT \ln Q$ 反應 a $A(aq) + b$ $B(aq) = c$ $C(aq) + d$ $D(aq)$ 的反應商 Reaction quotient Q for a reaction $Q = \frac{[C]^\circ[D]^d}{[A]^a[B]^b}$ 韓德森方程式 Henderson—Hasselbalch equation: $pH = pK_a + \log \frac{[A^-]}{[AH]}$ 奈斯特方程式 $, Q$ 為還原半反應的反應商 Nernst—Peterson equation:where Q is the reaction quotient of the reduction half-reaction $T = 298 \text{ K}, \frac{RT}{F} \ln Q$ at $T = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 比爾定律 Beer—Lambert law: $A = \varepsilon lc$ 反應速率積分式 Rate laws in integrated form: $SW = \frac{[A] = [A]_0 - kt}{[A]_0 - kt}$ 一級反應 First order: $\frac{[A] = [A]_0 - kt}{[A]_0 + kt}$ 一級反應 Second order: $\frac{[A] = [A]_0 - kt}{[A]_0 + kt}$ 一級反應半生期 Half-life for a first order process: $t_{1/2} = \frac{\ln 2}{k}$ 數目平均草耳質量 Number average molar mass M_0 : $M_0 = \frac{\sum_i N_i M_i}{k}$	普朗克-愛因斯坦關係式 Planck-Einstein relation:	$E = hc/\lambda = h \ \nu$
吉布斯自由能 Gibbs free energy:	理想氣體方程式 Ideal gas equation:	
宣布斯自田龍 Gibbs free energy: $\Delta_{r}G^{\circ} = -n F E_{cell}^{\circ}$ $\Delta_{r}G = \Delta_{r}G^{\circ} + RT \ln Q$ 反應 a A(aq) + b B(aq) = c C(aq) + d D(aq) 的反應商 Reaction quotient Q for a reaction $Q = \frac{[C]^{\circ}[D]^{d}}{[A]^{a}[B]^{b}}$ 韓德森方程式 Henderson—Hasselbalch equation: $pH = pK_{a} + \log \frac{[A^{-}]}{[AH]}$ 奈斯特方程式,Q 為還原半反應的反應商 $E = E^{\circ} - \frac{RT}{2F} \ln Q$ at $T = 298$ K, $\frac{RT}{F} \ln 10 \approx 0.059$ V 比爾定律 Beer—Lambert law: $A = \varepsilon lc$ 反應速率積分式 Rate laws in integrated form:		G = H - TS
反應 a A(aq) + b B(aq) = c C(aq) + d D(aq) 的反應商 Reaction quotient Q for a reaction $Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$ 韓德森方程式 Henderson—Hasselbalch equation: $pH = pK_a + \log \frac{[A^-]}{[AH]}$ 奈斯特方程式, Q 為還原半反應的反應商 Nernst—Peterson equation: where Q is the reaction quotient of the reduction half-reaction $E = E^o - \frac{RT}{zF} \ln Q$ at $T = 298$ K, $\frac{RT}{F} \ln 10 \approx 0.059$ V 比爾定律 Beer—Lambert law: $A = \varepsilon lc$ 反應速率積分式 Rate laws in integrated form: 零級反應- Zero order: $[A] = [A]_0 - kt$ 一級反應- First order: $[A] = \ln[A]_0 - kt$ 一級反應- Second order: $1/[A] = 1/[A]_0 + kt$ 一級反應半生期 Half-life for a first order process: $t_{1/2} = \frac{\ln 2}{k}$ 數目平均莫耳質量 Number average molar mass M_B : $M_B = \frac{\sum_i N_i M_i}{k}$	吉布斯自由能 Gibbs free energy:	
反應 a A(aq) + b B(aq) = c C(aq) + d D(aq) 的反應商 Reaction quotient Q for a reaction $Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ 韓德森方程式 Henderson-Hasselbalch equation: $pH = pK_{a} + \log \frac{[A^{-}]}{[AH]}$ 奈斯特方程式, Q 為還原半反應的反應商 Nernst-Peterson equation:where Q is the reaction quotient of the reduction half-reaction $tT = 298 \text{ K}, \frac{RT}{F} \ln Q$ at $T = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 比爾定律 Beer-Lambert law: $A = clc$ 反應速率積分式 Rate laws in integrated form: 零級反應- Zero order: $[A] = [A]_{0} - kt$ 一級反應- First order: $1/[A] = 1/[A]_{0} + kt$ 一級反應- Second order: $1/[A] = 1/[A]_{0} + kt$ 一級反應半生期 Half-life for a first order process: $t_{1/2} = \frac{\ln 2}{k}$ 數目平均草耳質量 Number average molar mass M_{D} : $M_{D} = \frac{\sum_{i} N_{i} M_{i}}{N_{i}}$		
的反應商 Reaction quotient Q for a reaction $Q = \frac{[e] [D]}{[A]^a[B]^b}$ 韓德森方程式 Henderson—Hasselbalch equation: $pH = pK_a + log \frac{[A^-]}{[AH]}$ 奈斯特方程式, Q 為還原半反應的反應商 Nernst—Peterson equation: where Q is the reaction quotient of the reduction half-reaction $tT = 298 \text{ K}, \frac{RT}{F} ln 10 \approx 0.059 \text{ V}$ 比爾定律 Beer—Lambert law: $A = \varepsilon lc$ 反應速率積分式 Rate laws in integrated form: 零級反應- Zero order: $[A] = [A]_0 - kt$ 一級反應- First order: $ln[A] = ln[A]_0 - kt$ 二級反應- Second order: $t_{1/2} = \frac{ln 2}{k}$ 數目平均草耳質量 Number average molar mass M_0 : $M_0 = \frac{\sum_i N_i M_i}{E}$		
奈斯特方程式,Q 為還原半反應的反應商 $E=E^{\circ}-\frac{RT}{z_F}\ln Q$ at $T=298~\mathrm{K}$, $\frac{RT}{F}\ln 10\approx 0.059~\mathrm{V}$ 比爾定律 Beer–Lambert law: $A=\varepsilon lc$ 反應速率積分式 Rate laws in integrated form: 零級反應- Zero order:		$O = \frac{[C]^{c}[D]^{d}}{[C]^{c}[D]^{d}}$
奈斯特方程式,Q 為還原半反應的反應商 $E=E^{\circ}-\frac{RT}{z_F}\ln Q$ at $T=298~\mathrm{K}$, $\frac{RT}{F}\ln 10\approx 0.059~\mathrm{V}$ 比爾定律 Beer–Lambert law: $A=\varepsilon lc$ 反應速率積分式 Rate laws in integrated form: 零級反應- Zero order:	的	$[A]^a[B]^b$
Nernst—Peterson equation:where Q is the reaction quotient of the reduction half-reaction 比爾定律 Beer—Lambert law: $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 比爾定律 Beer—Lambert law: $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 是一定 $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 是一定 $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 是一定 $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 是一定 $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 是一定 $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 是一定 $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 是一定 $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ 是一定 $D = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [A] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [A] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$ [B] = $298 \text{ K}, $	韓德森方程式 Henderson-Hasselbalch equation:	$pH = pK_a + \log \frac{[A]}{[AH]}$
Nernst–Peterson equation: where Q is the reaction quotient of the reduction half-reaction at $T=298~\mathrm{K}, \frac{RT}{F} \ln 10 \approx 0.059~\mathrm{V}$ 比爾定律 Beer–Lambert law: $A = \varepsilon lc$ 反應速率積分式 Rate laws in integrated form: $[A] = [A]_0 - kt$ 一級反應- First order: $\ln[A] = \ln[A]_0 - kt$ 二級反應- Second order: $1/[A] = 1/[A]_0 + kt$ 一級反應半生期 Half-life for a first order process: $t_{1/2} = \frac{\ln 2}{k}$ 數目平均草耳質量 Number average molar mass M_{B} : $M_{\mathrm{B}} = \frac{\sum_{i} N_i M_i}{k}$	奈斯特方程式,Q為還原半反應的反應商	$E = E^{0} - \frac{RT}{2} \ln Q$
比爾定律 Beer—Lambert law: $A = \varepsilon lc$ 反應速率積分式 Rate laws in integrated form: 零級反應- Zero order: $ [A] = [A]_0 - kt $ 一級反應- First order: $ ln[A] = ln[A]_0 - kt $ 二級反應- Second order: $ 1/[A] = 1/[A]_0 + kt $ 一級反應半生期 Half-life for a first order process: $ t_{1/2} = \frac{ln2}{k} $ 數目平均草耳質量 Number average molar mass M_n : $ M_n = \frac{\sum_i N_i M_i}{k} $	Nernst–Peterson equation:where Q is the reaction	
反應速率積分式 Rate laws in integrated form: 零級反應- Zero order: 一級反應- First order: 二級反應- Second order: 一級反應- Second order: 一級反應半生期 Half-life for a first order process: $t_{1/2} = \frac{\ln 2}{k}$ 數目平均草耳質量 Number average molar mass M_n : $M_n = \frac{\sum_i N_i M_i}{k}$	quotient of the reduction half-reaction	at $I = 298 \text{ K}, \frac{1}{F} \ln 10 \approx 0.059 \text{ V}$
零級反應- Zero order: $ [A] = [A]_0 - kt $ $ - 級反應- First order: \qquad \qquad ln[A] = ln[A]_0 - kt $ $ - 級反應- Second order: \qquad \qquad 1/[A] = 1/[A]_0 + kt $ $ - 級反應半生期 Half-life for a first order process: \qquad \qquad t_{1/2} = \frac{ln2}{k} $ 數日平均草耳質量 Number average molar mass M_n : $ M_n = \frac{\sum_i N_i M_i}{k} $	比爾定律 Beer–Lambert law:	$A = \varepsilon lc$
一級反應- First order: $\ln[A] = \ln[A]_0 - kt$ 二級反應- Second order: $1/[A] = 1/[A]_0 + kt$ 一級反應半生期 Half-life for a first order process: $t_{1/2} = \frac{\ln 2}{k}$ 數日平均草耳質量 Number average molar mass M_n : $M_n = \frac{\sum_i N_i M_i}{k}$	反應速率積分式 Rate laws in integrated form:	1
二級反應- Second order: $1/[A] = 1/[A]_0 + kt$ 一級反應半生期 Half-life for a first order process: $t_{1/2} = \frac{\ln 2}{k}$ 數目平均草耳質量 Number average molar mass M_n : $M_n = \frac{\sum_i N_i M_i}{m_i}$	零級反應- Zero order:	$[A] = [A]_0 - kt$
二級反應- Second order: $1/[A] = 1/[A]_0 + kt$ 一級反應半生期 Half-life for a first order process: $t_{1/2} = \frac{\ln 2}{k}$ 數目平均莫耳質量 Number average molar mass M_n : $M_n = \frac{\sum_i N_i M_i}{k}$	一級反應- First order:	$\ln[A] = \ln[A]_0 - kt$
數目平均草耳質量 Number average molar mass M_n : $M_n = \frac{\sum_i N_i M_i}{m_i}$	二級反應- Second order:	$1/[A] = 1/[A]_0 + kt$
數目平均莫耳質量 Number average molar mass M_n : $M_n = \frac{\sum_i N_i M_i}{\sum_i N_i}$ 質量平均莫耳質量 Number average molar mass M_w : $M_w = \frac{\sum_i N_i M_i^2}{\sum_i N_i M_i}$ 多分散指數 Polydispersity index I_p : $I_p = \frac{M_w}{M_n}$	一級反應半生期 Half-life for a first order process:	$t_{1/2} = \frac{\ln 2}{k}$
質量平均莫耳質量 Number average molar mass M_{w} : $M_{\mathrm{w}} = \frac{\sum_{\mathrm{i}} N_{\mathrm{i}} M_{\mathrm{i}}^2}{\sum_{\mathrm{i}} N_{\mathrm{i}} M_{\mathrm{i}}}$ 多分散指數 Polydispersity index I_{p} : $I_{\mathrm{p}} = \frac{M_{\mathrm{w}}}{M_{\mathrm{n}}}$	數目平均莫耳質量 Number average molar mass M_n :	$M_{\rm n} = \frac{\sum_{\rm i} N_{\rm i} M_{\rm i}}{\sum_{\rm i} N_{\rm i}}$
多分散指數 Polydispersity index $I_{\rm p}$: $I_{\rm p} = \frac{M_{\rm w}}{M_{\rm n}}$	質量平均莫耳質量 Number average molar mass M_{w} :	$M_{\rm w} = \frac{\sum_{\rm i} N_{\rm i} M_{\rm i}^2}{\sum_{\rm i} N_{\rm i} M_{\rm i}}$
	多分散指數 Polydispersity index Ip:	$I_{ m p}=rac{M_{ m w}}{M_{ m n}}$


週期表

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3	4											5	6	7 N.I	8	9	10
Li	Be											В	С	Ν	Ο	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Αl	Si	P	S	CI	Ar
22.99	24.31											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.95	-	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57-71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	-	-	-
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89- 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
-	-	103	-	-	- 9		-	-	-	-	-	-	-	-	-	-	- 9

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
-	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

¹H NMR
Chemical shifts of hydrogen 氫的化學位移(單位 ppm / TMS in ppm / TMS)

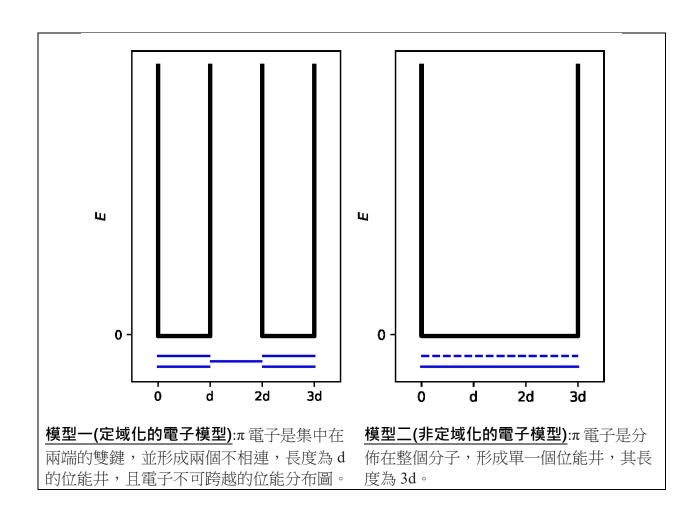
H-H coupling constants (in Hz) H-H 耦合常數(單位 Hz)

氫的類型 Hydrogen type	$ J_{ab} $ (Hz)
$R_2CH_aH_b$	4-20
R ₂ H _a C—CR ₂ H _b	2-12 自由轉動時(if free rotation): 6-8 ax-ax (環己烷 cyclohexane): 8-12 ax-eq or eq-eq (環己烷 cyclohexane): 2-5
R ₂ H _a C—CR ₂ —CR ₂ H _b	自由轉動時(if free rotation): < 0.1 其他(剛性 rigid): 1-8
RH _a C=CRH _b	順式(cis): 7-12 反式(trans): 12-18
R ₂ C=CH _a H _b	0.5-3
H _a (CO)—CR ₂ H _b	1-3
RH _a C=CR—CR ₂ H _b	0.5-2.5

eq = 水平方向的(equatorial), ax = 軸向的 (axial)

IR 光譜表 IR spectroscopy table

振動模式 Vibrational mode	σ (cm ⁻¹)	強度 Intensity
醇(alcohol) O—H (伸縮)	3600-3200	強 strong
羧酸(carboxylic acid) O—H (伸縮)	3600-2500	強 strong
N—H (伸縮)	3500-3350	強 strong
≡C—H (伸縮)	3300	強 strong
=C—H (伸縮)	3100-3000	弱 weak
C—H (伸縮)	2950-2840	弱 weak
-(CO)—H (伸縮)	2900-2800	弱 weak
		77.
C≡N (伸縮)	2250	強 strong
C≡C (伸縮)	2260-2100	可變的 variable
醛(aldehyde) C=O (伸縮)	1740-1720	強 strong
酸酐(anhydride) C=O (伸縮)	1840-1800; 1780-1740	弱 weak; 強 strong
酯(ester) C=O (伸縮)	1750-1720	強 strong
酮 _(ketone) C=O (伸縮)	1745-1715	強 strong
醯胺(amide) C=O (伸縮)	1700-1500	強 strong
Amin's (aninde)	1700-1300	JK strong
烯 _(alkene) C=C (伸縮)	1680-1600	弱 weak
苯環 _(aromatic) C=C (伸縮)	1600-1400	弱 weak
CH ₂ (彎曲 bending)	1480-1440	中 medium
CH ₃ (彎曲 bending)	1465-1440; 1390-1365	中 medium
C—O—C (伸縮)	1250-1050	強 strong
C—OH (伸縮)	1200-1020	強 strong
NO ₂ (伸縮)	1600-1500; 1400-1300	強 strong


問題	小題	1	2	3	4	5	6	7	8	9	10	11	合計
T1	配分	3	4	4	2	3	2	2	4.5	2.5	3	3	33
6%	得分												

問題 T1: 丁二烯(butadiene)與無窮高位能井模型

1,3-丁二烯 (buta-1,3-diene) 分子可寫成具有單鍵、雙鍵交替的 $CH_2=CH-CH=CH_2$ 。 然而,它的化學反應性並不能以這樣的表示法來呈現,其中它的 π 電子適合描述為分佈在三個鍵上:

這樣的分子可用電子自由移動的一維箱子模型來描述。在箱子的長度為 L 的模型裡,其電子能量為 $E_n = \frac{n^2h^2}{8m_eL^2}$,n 為正整數。

1.請討論下圖兩個不同的模型。<u>在個別的模型</u>能階圖中,<u>畫出</u>至少三個最低能量的能階, 並表示出模型間、模型內能階間相對的高低差異。

2.將 π 電子 <u>填入</u> 模型-	一的能階圖裡,	並使用 h, me,	與 d 三個變數來表示	莫型一裡 π 電子
的總能量。				

$$E(1) =$$

3.將 π 電子<u>填入</u>模型二的能階圖裡,並使用 h, m_e , 與 d 三個變數來表示模型二 π 電子的總能量。

$$E(2) =$$

共軛能定義為:實際上 π 電子系統的總能,減去相同 π 電子數的乙烯分子們的能量。

4.使用 $h, m_e,$ 與 d = 個變數來表示了二烯分子的 π 電子系統的共軛能。

$$\Delta E_{
m c} =$$

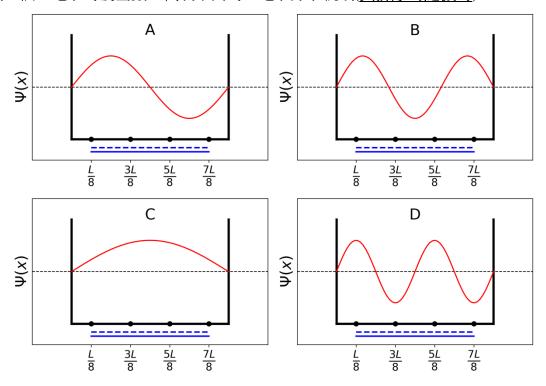
模型一、二皆視為過度簡化的電子結構模型。以下將提出一個新的模型:

5. 除了下圖的路易士結構之外,請以路易士表示法<u>畫出</u>另外三個丁二烯可能的共軛結構。

$$H_2C$$
 CH_2

為了納入碳原子的原子半徑的影響,模型二修正成模型三,如下所示:

- 新的位能井的總長表示為 L,横坐標只介於 0 到 L 之間;
- 四個碳原子則位於 L/8; 3L/8; 5L/8 與 7L/8 的位置。


模型三的每個能階,其π電子的波函數表示為:

$$\psi_{\rm n}(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

對一個有N個 π 電子系統而言,其 π 電子密度函數可表示為:

$$\rho(x) = 2 \sum_{i=1}^{N/2} |\psi_i(x)|^2$$

下列 4 個 π 電子的波函數,代表不同的 π 電子分子軌域(其排序為隨機的)。

6.將上圖的四個波函數的能量排序(波函數能量以 EA, EB, Ec與 ED代表)。

< < <

7.<u>選出</u>填有丁二烯所有 π 電子的軌域。 $(A, B, C \to D)$ 。

8. 在模型三裡,當 n = 1 與 n = 2 時,計算出波函數在 x = 0, L/4 與 L/2 的各別數值。

 $\psi_1(0) =$

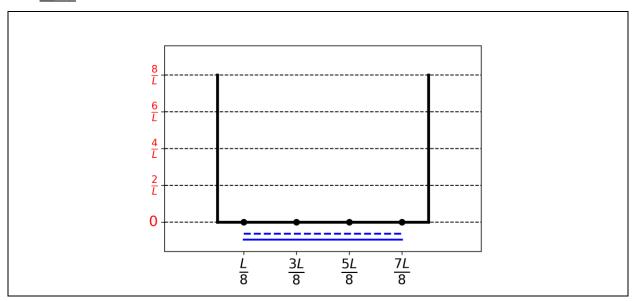
 $\psi_1\left(\frac{L}{4}\right) =$

 $\psi_1\left(\frac{L}{2}\right) =$

 $\psi_2(0) =$

 $\psi_2\left(\frac{L}{4}\right) =$

 $\psi_2\left(\frac{L}{2}\right) =$


9. 在模型三裡,計算出在 x = 0, L/4 與 L/2, π 電子密度的數值。

 $\rho(0) =$

$$\rho\left(\frac{L}{4}\right) =$$

$$\rho\left(\frac{L}{2}\right) =$$

10. **畫出** π電子在 0 至 L 之間,其電子密度的變化曲線圖。

- 11. 將下列 5 種 CC 化學鍵(標示為 B1, B2, ..., B5)其鍵長遞增的順序,使用數學符號來 表示其相對順序(=或<)
- B1: 丁二烯裡的 C1C2 鍵
- B2: 丁二烯裡的 C2C3 鍵
- B3: 丁二烯裡的 C3C4 鍵
- B4: 乙烷的 CC 鍵
- B5: 乙烯的 CC 鍵

問題	小題	1	2	3	4	5	6	7	8	9	10	合計
T2	配分	1	4	2	3	3	6	4	1	8	2	34
7%	得分											

問題 T2: 水裂解成氫

數據:

化合物	H ₂ (g)	H ₂ O(1)	H ₂ O(g)	O ₂ (g)
$\Delta_{\rm f}H^{\circ} ({\rm kJ~mol}^{-1})$	0	-285.8	-241.8	0
$S_{\rm m}^{\circ} (\mathrm{J} \; \mathrm{mol}^{-1} \mathrm{K}^{-1})$	130.6	69.9	188.7	205.2

氫分子(H₂)視為石化燃料的替代品。然而,降低氫分子的生產成本,與生產過程中對環境影響,是一個巨大的挑戰。針對這些問題,發展水裂解科技是一個具有前景的選擇。

1. <u>寫卜</u> 液態水裂解的化學反應平衡万桯式,假設 H ₂ O 的係數為 1。	
L	

2. 使用前述的熱力學數據,透過計算 <u>說明</u> 水裂解反應在 298 K 的條件下,在熱力學上是 否有利於發生?
計算:
在熱力學上是否有利於發生? (Reaction thermodynamically favorable?)
□ Yes □ No

水裂解反應可在酸性水溶液中,透過兩個電極,並供給電壓,進行電化學分解(如圖 1)。 兩端的電極表面,皆可觀察到氣泡的產生。

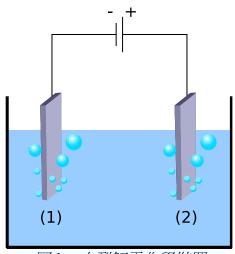


圖1-水裂解電化學裝置

3. 針對兩個電極,分別寫下其平衡的電化學半反應式。

電極(1):			
電極(2):			

4. 使用前面提供(或是第 2 小題計算出)的熱力學數據,<u>計算</u>在 298 K 的條件下,使水裂解反應可以進行的理論電壓(ΔE_{th});並<u>選出</u>實際實驗時的外加電壓($\Delta E_{applied}$)與理論電壓(ΔE_{th})的大小關係。假設反應物與產物皆為標準狀態。計算過程所用的符號需標示狀態,並計算至小數點第三位。

水您,业 <u>计异</u> 主小数劫先二位。
計算:
$\Box \Delta E_{applied} = \Delta E_{th}$
\square $\Delta E_{applied} > \Delta E_{th}$, $\Delta E_{th} = \underline{\dots V}$ (數字寫到小數點三位)
$\square \Delta E_{applied} \leq \Delta E_{th}$
如果你無法計算ΔEth 的數值,請使用 1.200V 在以下的問題中。

實驗上,通常需要提供大於熱力學有利條件的電壓,才能觀測到水裂解反應。假設陰極的電極材料為白金(Pt),針對不同的陽極材料,需要供給的實際電壓 (ΔE_{min}) 如下表所示:

Anode	$\Delta E_{\min}(V)$
IrO_x	1.6
NiO_x	1.7
CoO_x	1.7
Fe_2O_3	1.9

 ΔE_{th} 與 ΔE_{min} 之間的數值差異,則代表實驗裝置耗損的電力。

5. 請使用 ΔE_{th} 與 ΔE_{min} , <u>推導出</u>水裂解反應裝置的能源轉換效率 η_{elec} (使用在水裂解反應的能源轉換比例)。請<u>計算</u>以 Pt 為陰極, Fe_2O_3 為陽極的 η_{elec} 。請<u>選出</u>能源轉換效率最高的陽極材料。

 $\eta_{
m elec}$ = $\pi_{
m elec}$ 能源轉換效率的計算是以 $\pi_{
m elec}$ 能源轉換效率的計算是以 $\pi_{
m elec}$ % $\pi_{
m elec}$ % $\pi_{
m elec}$ $\pi_{
m elec}$ % $\pi_{
m elec}$ $\pi_{
m elec}$

另一種水裂解反應可以利用光催化劑來驅動。這樣的反應模式,需要使用到半導體材料來吸收光線。

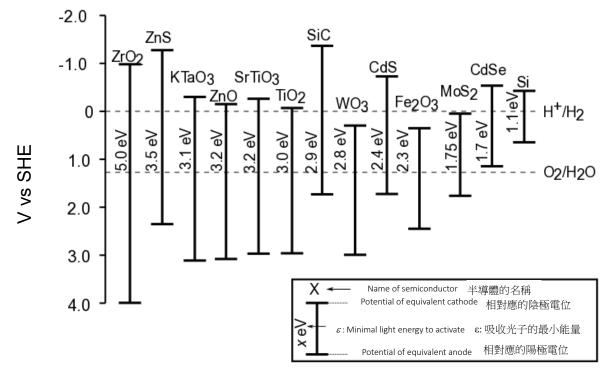


圖 2 不同半導體材料所對應的陰極、陽極電位,以及所需的光子能量。虛線表示在標準狀態下,水的氧化與還原的電位。SHE = 標準氫電極

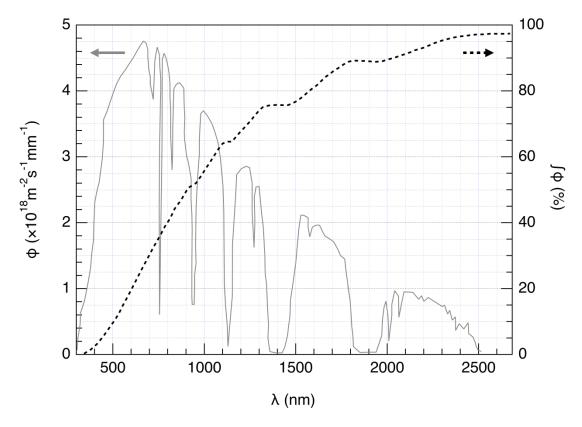


圖.3 左邊 y 軸: 太陽光的光子通量(*ϕ*)在各種波長的分布。光子通量定義為在單位面積、單位時間的條件下,照射到半導體表面的光子數目。右邊 y 軸: 累計的光子通量比例 (%;由最短波長開始累加至特定波長,所算出的光子通量占比)

6. 請<u>計算</u>出 TiO_2 , CdS 與 Si 三種半導體材料,在吸收光子時所相對應的累計的光子通量 比例 $\int \phi$ (%)。請**詳細列出**計算式與單位。

解釋與計算:	

	累計的光子通量比例∫ φ (%) Approximate fraction
TiO ₂	%
CdS	%
Si	%

半導體材料的吸光過程,造成材料表面電位的改變。因此,前述現象可將材料吸光後的激發狀態,視為一組陰極、陽極電極分別擁有不同的電位。

	2的數據,在下列陽極材料名單中, 極、陰極反應的所有材料。	選出 在吸光的激發態下:	,
□ZrO2	□ZnO	□ TiO ₂	□ WO ₃
□CdS	□ Fe ₂ O ₃	□ CdSe	□ Si
8. 承問題	7,請哪一個半導體材料,能產生最	多氫分子?	
H ₂ 與 O ₂ 光催化裝	究中,某一個光催化的水裂解反應在 。其所使用的入射光強度 $P=1.0 \mathrm{kW} \mathrm{i}$ 置在照射一小時的太陽光後,能產生 此光催化裝置的能源轉換效率 η_{direct} 。	m ⁻² 且光陽極的表面積為	
計算:			
n. –	%		
$\eta_{ m direct}$ =			
	如果你無法計算ηdirect的數值,請使	用 $\eta_{ m direct}$ =10%在以下的問	題中。

轉換太陽光的能量到產生氫分子共有兩種模式: 直接光催化反應(direct photocatalysis) 與非直接光驅動電解反應(indirect photo-electrolysis),後者是組合一個太陽能電池 (photovoltaic panel)產生電力後,再將電力傳輸至一個電解裝置來產生 H_2 。當前市場上,太陽能電池發電的能源轉換效率約為 $\eta_{panels} = 20\%$ 。

裝置), $比較兩種產氫模式的能源轉換效率相對大小(\etadirect與\etaindirect)。$					
計算:					
\square $\eta_{ m direct}$ $>$ $\eta_{ m indirect}$	\square $\eta_{ ext{direct}} pprox \eta_{ ext{indirect}}$	\square $\eta_{ ext{direct}} < \eta_{ ext{indirect}}$			

10. 承問題 9 的直接光催化法,與非直接光驅動電解(以 Fe_2O_3 為陽極、Pt 為陰極的電解

問題	小題	1	2	3	4	5	6	7	8	9	10	11	12	合計
T3	配分	1	3	3	3	4	2	7	2	2	3	4	6	40
5%	得分													

問題 T3:關於氯化銀

298 K 下的數據:

 $-\log(AgCl$ 溶度積常數 K_{s1}): $pK_{s1}(AgCl) = 9.7$;

 $-\log(Ag_2CrO_4$ 溶度積常數 $K_{s2})$: p $K_{s2}(Ag_2CrO_4) = 12$

錯合物[Ag(NH₃)_n]+生成常數: $\beta_n = 10^{7.2}$

以下為相對於標準氫電極的電位:

 $Ag^+/Ag(s)$ 的標準電位: $E^{\circ}(Ag^+/Ag(s)) = 0.80 \text{ V}$

海水中所量測出的電位 $O_2(aq)/HO^-(aq)$: $E'(O_2(aq)/HO^-(aq)) = 0.75 \text{ V}$

第A部分:給呂薩克(Louis Joseph Gay-Lussac)化學課上曾經說過的話。

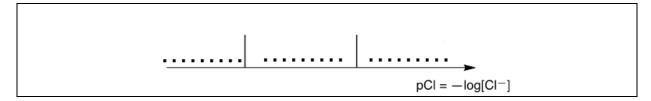
下列為 Louis Joseph Gay-Lussac(法國化學家與物理學家,1778-1850)在化學課上,針對處理部分 AgCl 的化學性質,所說過的話。

語句 A: "我現在要談到 AgCl,它是一個乳白色的固體。它可以輕易地透過在硝酸銀 (AgNO₃) 水溶液中加入氯化氫(HCl)而得。"

語句 B: "因為 AgCl 不溶於水,這種鹽類吃起來沒有任何味道。"

語句 C: "AgCl 這個化合物完全不溶於乙醇(ethanol),甚至不溶於酸。但在濃鹽酸下,AgCl 可輕易溶解。"

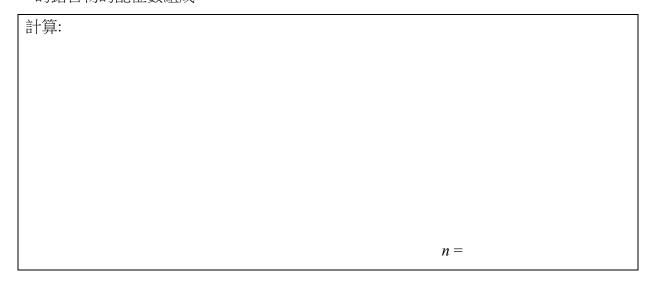
語句 D: "另外,AgCl 可輕易溶解於氨水。"


語句 E: "因此,我們可以透過在氨水中加入酸,把先前溶解於氨水的 AgCl 趕出來。"

語句 F: "如果你用一個銀製的碗來裝海水,並將其加熱揮發,你將得到不純的氯化鈉 (NaCl),其中混雜著乳白色固體。"

1. 語句 A: 寫出生成 AgCl(s)的平衡化學反應式。

2. 語句 B: <u>計算</u> 在 298K 的水中,AgCl(s)的溶解	度 (代號為 s ,其	單位為 mol L-1)
Calculation:		
計算:		
	s =	$mol L^{-1}$


3. **語句 C**: 在高濃度的氯離子(Cl⁻)環境中,一種化學計量比例為 1:2 的錯合物會生成。 在下圖中,橫軸代表由左至右遞增的 pCl 數值 (pCl = -log[Cl⁻],**請在橫軸上的三個區** 塊中,寫下最主要生成的化合物。pCl 值不需計算出來。

語句 D: 當氨水加入 AgCl 中,某種配位數為 n 的錯合物生成。

4.<u>寫下</u>由 AgCl加入 NH3合成 [Ag(NH3)n]+錯合物的平衡化學反應方程式,並<u>計算</u>出錯合物形成平衡常數的值。

5. 將 NH₃ 與 0.1 mol AgCl(s)加入 1 公升(L)的水中,直到當固體完全溶解時。此時發現 $[NH_3] = 1.78$ mol L^{-1} 。假設反應物的體積所造成的稀釋效應可以忽略,請<u>推理</u>出生成的錯合物的配位數組成。

7.假設海水是弱鹼性,蘊藏豐富的氧氣。在這種情況下,銀金屬在海水裡,可以還原氧氣。 寫下語句 F 所描述的,生成乳白色固體的平衡反應式, <u>並請把氧氣的係數訂為 1</u> 請 <u>計算</u> 該化學平衡在 298 K 條件下的平衡常數值。
平衡化學反應方程式:
計算:
K =

6. 請針對語句 E 的描述,寫出相對應的平衡化學反應方程式。

第B部分:莫爾法(The Mohr method)

莫爾法是利用銀離子(Ag^+)在鉻酸鉀($2K^+$, CrO_4^{2-})的協助下,滴定氯離子(Cl^-)的變色檢定法。把三滴 $7.76\cdot 10^{-3}$ mol L^{-1} 的 K_2CrO_4 水溶液(約 0.5 mL)加入 $V_0=20.00$ mL 未知濃度的 NaCl 溶液,其 Cl^- 的濃度標示為 C_{Cl} 。接著使用 $C_{Ag}=0.050$ mol L^{-1} 的 $AgNO_3$ 水溶液,來滴定前述未知濃度的 Cl^- ,並生成固體 A。當加入 $AgNO_3$ 體積為 4.30 mL 時 ($V_{Ag}=4.30$ mL),紅色固體 B 會產生。

8. <u>寫出</u> 滴定反應「	中,會發生的平衡化	學反應方程式。並計	·算其相關的平衡	5常數。
			V0. —	
			$K^{\circ}_{1} =$	
			$K^{\circ}_{2} =$	
9. <u>寫出</u> 固體產物化	上學式。			
Solid A :				
Solid B :				
10. <u>計算</u> 原始的 N	[aCl 溶液中氯離子的	」濃度 <i>C</i> cι∘		
計算:				
			$C_{\text{Cl}} =$	$mol L^{-1}$
如果你無法	去計算 Cci 的數值,語	請使用 Ccl = 0.010 mc	ol L-1 在以下的問	問題中。
11. <u>計算</u> 生成 AgC	l(s)沉澱所需的最小	體積 $V_{Ag}(\min)$ 。		
計算:				
	$V_{Ag}(\min) =$	mL		

12. 當 Ag₂CrO₄(s)開始沉澱時,請<u>計算</u>此時剩餘的剩餘的氯離子濃度[Cl¯]res。藉由比較 Cl¯的濃度變化,<u>判斷</u>CrO₄²¯是否為適用於滴定終點的指示劑。

計算:		
	[Cl ⁻] _{res} =	mol L ⁻¹
2		
CrO4 ²⁻ 是一個適合的滴定終點指示劑,	因為:	

問題	小題	1	2	3	4	5	6	7	8	合計
T4	配分	6	9	8	5	6	2	2	12	50
7%	得分									

問題 T4:從火藥中發現碘

在十九世紀,法國的企業家 B. Courtois 專門從事用於火藥的硝酸鹽 A ($M_A(NO_3)_m$) 的 生產。A 最初都是從亞洲進口,之後是利用硝酸鹽 B ($M_B(NO_3)_n$)與取自藻類(algae)的 化合物 C 進行交換反應而製得。

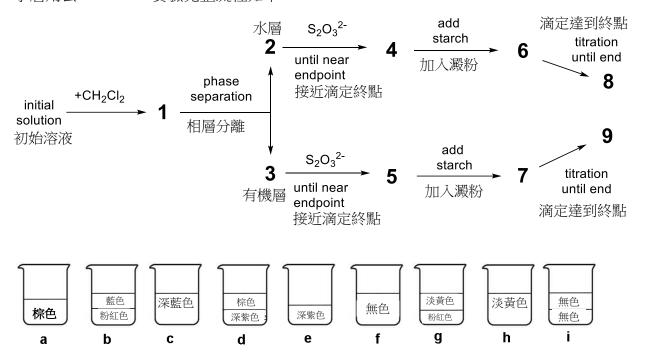
1.	鹼金屬或鹼 一個含9±	臉土金屬。 = 3 w%的不	化學式。已知 其中一種硝酸 純物。金屬 N 2.4 w%。請詳	鹽所含有的非 【A在硝酸鹽 A	作金屬不純物 ▲中的含量為	的比例小於 38.4 w%,每	1 w%,而另

A:

and **B**:

氣態產物氧氣。在 0℃、1atm 下,氧氣體積為 60.48 L。(氧氣可視為理想氣體)							
2. 假設 E 只含有化合物 A D B ,不含其他的雜質,且 C 為純的無水化合物。 <u>詳列</u> 計算過程,求出混合物 E 中的組成比例($w\%$)。							
w% of A : and of B :							
, 0111.							

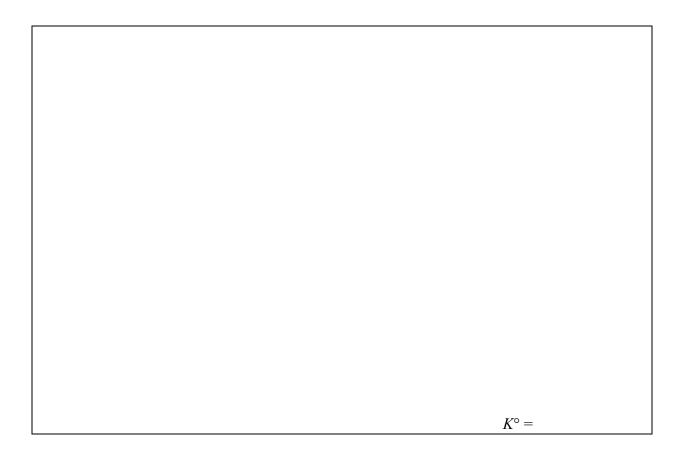
為了得到 A,將 262.2 g 的固體化合物 C 加入含有 442.8 g 硝酸鹽 B (此時 B 為過量)的溶液,結果,過濾後可得 190.0 g 白色沉澱物 D。之後將濾液蒸發後,可得到固體混合物 E。將 E 繼續加熱直到質量不再變化,可得成分皆為亞硝酸鹽 (NO_2) 的固體和唯一的


3. <u>決定</u> 化合物 \mathbb{C} 與 \mathbb{D} 的化學式,並 <u>寫出</u> \mathbb{B} 和 \mathbb{C} 反應的平衡反應式。
\mathbf{C} : and \mathbf{D} :
B和 C 反應的平衡反應式:
西元 1811 年,Courtois 以銅製容器在研究藻類的灰燼,發現容器的腐蝕損毀速度較平時為快。當他正在研究這個現象時,他的貓跑進實驗室打翻了濃硫酸且濺在乾燥的藻
類灰燼上。紫色的蒸氣瞬間從容器內冒出來(1,硫酸是氧化劑):碘(12)就這樣被發現
フ!エロI \$\\$日,\\$\\$\\$\\$\\$\\$\\$\\$
了!而且 I2就是造成銅被腐蝕(2)的原因。由於 I2在醫藥方面有許多用途,因而
Courtois 開發一個製備 I_2 的新方法,也就是使用藻類灰燼與氯氣來反應產生 I_2 (3)。
Courtois 開發一個製備 I_2 的新方法,也就是使用藻類灰燼與氯氣來反應產生 I_2 (3)。目前, I_2 是使用下列兩組反應物 (NO_3^-, I^-, H^+)(4) 或是 (IO_3^-, I^-, H^+)(5) 來製得。
Courtois 開發一個製備 I_2 的新方法,也就是使用藻類灰燼與氯氣來反應產生 I_2 (3)。 目前, I_2 是使用下列兩組反應物 (NO_3 -, I -, H +)(4) 或是 (IO_3 -, I -, H +)(5) 來製得。 4. <u>寫出</u> 反應 1–5 的平衡反應式。
Courtois 開發一個製備 I_2 的新方法,也就是使用藻類灰燼與氯氣來反應產生 I_2 (3)。目前, I_2 是使用下列兩組反應物 (NO_3^-, I^-, H^+)(4) 或是 (IO_3^-, I^-, H^+)(5) 來製得。
Courtois 開發一個製備 I_2 的新方法,也就是使用藻類灰燼與氯氣來反應產生 I_2 (3)。 目前, I_2 是使用下列兩組反應物 (NO_3 -, I -, H +)(4) 或是 (IO_3 -, I -, H +)(5) 來製得。 4. <u>寫出</u> 反應 1–5 的平衡反應式。
Courtois 開發一個製備 I_2 的新方法,也就是使用藻類灰燼與氯氣來反應產生 I_2 (3)。目前, I_2 是使用下列兩組反應物 (I_3 , I_4 , I_5) 如是 (I_4) 或是 (I_5 , I_5 , I_5 , I_7 , I_7 , I_8) 如果 (I_8) 不製得。 4. <u>寫出</u> 反應 1–5 的平衡反應式。
Courtois 開發一個製備 I ₂ 的新方法,也就是使用藻類灰燼與氯氣來反應產生 I ₂ (3)。目前,I ₂ 是使用下列兩組反應物 (NO ₃ -, I ⁻ , H ⁺)(4) 或是 (IO ₃ -, I ⁻ , H ⁺)(5) 來製得。 4. <u>寫出</u> 反應 1-5 的平衡反應式。 1 2
Courtois 開發一個製備 I ₂ 的新方法,也就是使用藻類灰燼與氯氣來反應產生 I ₂ (3)。目前,I ₂ 是使用下列兩組反應物 (NO ₃ -, I ⁻ , H ⁺)(4) 或是 (IO ₃ -, I ⁻ , H ⁺)(5) 來製得。 4. <u>寫出</u> 反應 1 - 5 的平衡反應式。

碘分子(I_2)在水中的溶解度非常低,但若加入碘離子($iodide\ ion$, Γ)時,則 I_2 的溶解度會明顯增加。原因是兩者會結合形成三碘離子($triiodide\ ,I_3$):

$$I^{-}(aq) + I_{2}(aq) = I_{3}^{-}(aq)$$
 (6)

平衡式 (6)可經由使用二氯甲烷 (dichloromethane, CH_2Cl_2) 萃取 I_2 過程來了解。原因是 I 與 I_3 不溶於有機溶劑中,而 I_2 可以;當使用 CH_2Cl_2 進行萃取時, I_2 在 CH_2Cl_2 中的溶解度為其在水中的 15 倍。


進行下列實驗可說明上述現象。為了配製初始溶液,首先將少量的固體 I_2 加入至含有 0.1112 g 的碘化鉀 (KI) 的 50 mL 水溶液中。接著,加入 50 mL 的 CH_2Cl_2 並劇烈搖晃直 到達成平衡為止,之後將有機層與水層分離。再用硫代硫酸鈉的標準溶液 (由 14.9080 g 的 $Na_2S_2O_3 \cdot 5H_2O$ 配成 1.000 L 水溶液) 分別進行滴定。結果有機層用去 16.20 mL,而水層用去 8.00 mL。實驗完整流程如下:

5. 找出此實驗的不同階段 (1-9) 與實驗圖示(a-i)之間的相對應關係

階段	圖示
1	
2	
3	
4	
5	
6	
7	
8	
9	

6. <u>寫出</u> 在水層的滴定	E過程中,碘物種與 Na ₂ S ₂ O ₃	發生的兩個化學 反 應乙半衡	<u> </u>
7. <u>計算</u> 用於製備初始	治溶液所需 I2 的質量。		
	$m(I_2) =$	g	
9 斗管 巨應		g	
8. <u>計算</u> 反應式 (6) 達	$m(I_2) =$ 到平衡時的平衡常數 K° 。	g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. <u>計算</u> 反應式 (6) 達		g	
8. 計算反應式 (6) 達		g	
8. 計算反應式 (6) 達		g	

問題	小題	1	2	3	4	5	6	7	8	9	10	11	12	合計
T5	配分	3	4	4	2	5	5	4	3	5	2	2	2	41
8%	得分													

問題 T5:Azobenzene – β-cyclodextrin (偶氮苯-β-環糊精)錯合物可用於奈米機器

奈米機器是可將能源轉換為奈米-移動的分子元件,可應用於藥物釋放等。許多分子機器都是運用偶氮化合物(R-N=N-R')照光之異構化反應來達成。

1. <u>畫出</u>偶氮苯($H_5C_6-N=N-C_6H_5$)的立體異構物,並<u>畫出</u>一條連接兩個距離最遠的碳原子的直線。**比較**這兩條直線距離的大小(d_{trans} 和 d_{cis})。

圖1:合成M的可能反應物

2. M 可由簡單的反應物經兩步驟合成(圖 1)。從建議的反應物(N 到 Q)中<u>選擇二個</u>反應物以得到具有非常高位置選擇性之 M。溶於冷鹽酸中的亞硝酸鈉(NaNO₂)是用於合成之第一步的試劑。

Q

Reactants: and

決定結合常數 Kt

β-環糊精(圖 2 中的 \mathbb{C})是環狀的葡萄糖七聚物(heptamer),可和偶氮化合物形成包合錯合物(inclusion complexes)。在 $3\sim6$ 小題,我們將利用光譜法來決定包合錯合物($\mathbb{C}M_{trans}$) 之形成反應的結合常數 K_t 。(如圖 2 所示)

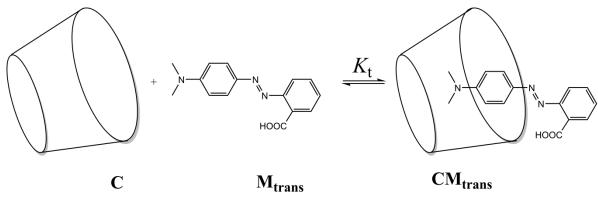


圖2:CM_{trans}包含錯合物的形成反應

由不同比例的 C 和 M_{trans} 混合來配製數種溶液,C 的初始濃度為 $[C]_0$ 、 M_{trans} 的初始濃度為 $[M_{trans}]_0$,其中所有溶液的 $[M_{trans}]_0$ 固定,而 $[C]_0$ 改變。我們在固定波長下,偵測每一溶液和純 M_{trans} 溶液之吸光度差值 ΔA 的變化情形。已知常數: $\varepsilon_{CMtrans}$ 與和 ε_{Mtrans} 分別為 CM_{trans} 與 M_{trans} 的莫耳吸光度;而 L 為通過溶液的光徑長度;C 之吸光度(εC)可忽略。

3. 證明 $\Delta A = \alpha$ [CM_{trans}], 並求出 α 與已知常數間的關係。

證明過程:	
7470	
	$\alpha =$
	a

	當 C 的濃度遠大於 M_{trans} (即 $[C]_0 >> [M_{trans}]_0$), <u>證明</u> C 的濃度可視為定值,意 $\simeq [C]_0$	
證明	明過程:	
	當 \mathbf{C} 的濃度遠大於 \mathbf{M}_{trans} (即[\mathbf{C}] $_0 >> [\mathbf{M}_{trans}]_0$), <u>證明</u> $\Delta A = \alpha \cdot \frac{\beta \cdot [\mathbf{C}]_0}{1 + K_{t} \cdot [\mathbf{C}]_0}$,並 <u>求出</u> 知常數和初始濃度的關係。	β與已
證明	明過程:	
證明		
證明	明過程:	
證明	明過程:	
證明	明過程:	
證明	明過程:	
證明	明過程:	
證明	明過程:	
證明	 明過程:	
證明	明過程:	
證明	明過程:	
證明	明過程: eta	

6.根據下圖<u>求出</u> K_t (圖 3)

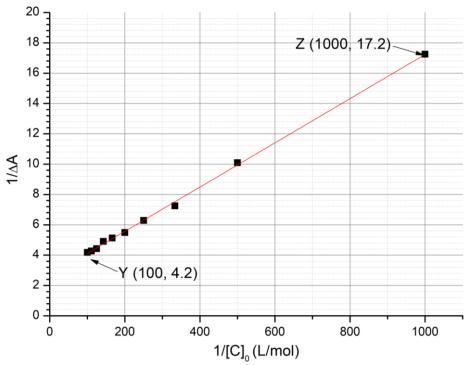


圖3:1/△A對1/[C]0作圖

計算過程:	
	$K_{\rm t} =$

決定結合常數 Kc

在小題 7~9,我們將利用動力學的方法來決定 M_{cis} 形成包合錯合物 CM_{cis} 的結合常數 K_{c} 。將只含 M_{trans} 的樣品照光,可產生 M_{cis} ,其濃度為 $[M_{cis}]_{0}$ 。 M_{cis} (未錯合或者在包合錯合物內)皆可經由熱異構化轉換為 M_{trans} 。在沒有 C 的情況下,異構化反應遵守一級動力學,其速率常數為 k_{1} 。所有錯合平衡都比異構化過程快。此實驗之動力學機制如圖 4 所示。

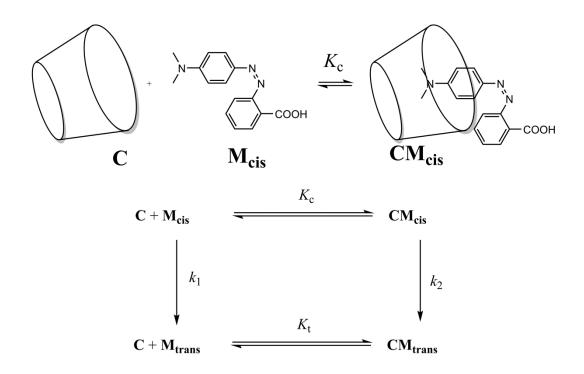


圖4:在C存在下,Mcis之異構化的動力學機制

 M_{cis} 之總量(未錯合以及錯合)的消耗速率 r 定義為:

$$r = k_1 [\mathbf{M_{cis}}] + k_2 [\mathbf{CM_{cis}}]$$

實驗上,r可視為一級反應動力學,其速率常數為 kobs:

$$r = k_{\text{obs}}([\mathbf{M_{cis}}] + [\mathbf{CM_{cis}}])$$

7. <u>證明</u> $k_{\text{obs}} = \frac{\gamma + \delta \cdot k_2[\mathbf{C}]}{1 + K_{\mathbf{C}}[\mathbf{C}]}$ 公式,並<u>求出</u> γ 和 δ 與已知常數間的關係。

證明過程:

	$\gamma =$		and	δ =		
	[M_{cis}] ₀ , <u>選擇</u> 在作 [C] ₀)。並經由數學			的半生期	<i>t</i> 1/2 可表示為	$t_{1/2} =$
,	2 307	1 1 1 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	7 714			
	內的 M_{cis} 異構化非常					
□未錯合的『	內的 M_{cis} 異構化非常 M_{cis} 異構化非常慢					
□ 未錯合的 N □ CM _{cis} 非常	內的 M cis 異構化非常 M cis 異構化非常慢 當安定					
□未錯合的『	內的 M cis 異構化非常 M cis 異構化非常慢 當安定					
□ 未錯合的 I □ CM _{cis} 非常	內的 M cis 異構化非常 M cis 異構化非常慢 當安定					
□ 未錯合的 I□ CM _{cis} 非常□ CM _{trans} 非	內的 M cis 異構化非常 M cis 異構化非常慢 當安定					
□ 未錯合的 I□ CM _{cis} 非常□ CM _{trans} 非	內的 M cis 異構化非常 M cis 異構化非常慢 當安定					
□ 未錯合的 I□ CM _{cis} 非常□ CM _{trans} 非	內的 M cis 異構化非常 M cis 異構化非常慢 當安定					

9.假設在滿足第 8 題的條件下,利用下面的數據進行線性回歸以決定 K。。你可以使用計算機或作圖。

$[\mathbf{C}]_0 \text{ (mol } \mathbf{L}^{-1})$	$t_{1/2}$ (s)	$[\mathbf{C}]_0 \pmod{\mathbf{L}^{-1}}$	$t_{1/2}$ (s)
0	3.0	$3.0 \cdot 10^{-3}$	5.9
$1.0 \cdot 10^{-4}$	3.2	$5.0 \cdot 10^{-3}$	7.7
$5.0 \cdot 10^{-4}$	3.6	$7.5 \cdot 10^{-3}$	9.9
$1.0 \cdot 10^{-3}$	4.1	$1.0 \cdot 10^{-2}$	12.6

三四歸公式:				\equiv		\equiv	\equiv	\equiv	\equiv	Ŧ				#					\equiv	#						_ 									H	H		I			\equiv
			#	#	#		#	#	#	#				#	#				#	#															#						#
			\blacksquare		#		#	#	#	#				#	Ħ				#	#	Ħ				#						#			Ħ	#	Ħ		Ħ	Ħ		
																			\parallel																						
								#	1					#					#	#																					
			#	#		#	\parallel	#	#	#				#	#				#	#															#						#
		#	#	#	#	#	#	#	#	#	Ħ			#	#	Ħ	#		#	#	#		ш		#	+			H		#		Ħ	Ħ	#	#	#	Ħ	#		#
		#	#	#	#	#	#	#	Ħ	Ħ	H	#	Ħ	Ħ	Ħ	Ħ	#	H	#	#	Ħ			H	ŧ	ŧ	H	H	H	1	Ħ	Ħ	Ħ	Ħ	#	Ħ	Ħ	Ħ	ŧ		Ħ
					#	#		#	#	#				#					#	#						ļ															
								#						#					#	#											#										
				#	#		#	#		#				#					#	#											#			H				Ħ			
			#	#	#		#	#	#	Ħ				Ħ					#	#	Ħ			Ħ	Ħ	Ì					Ħ		Ħ	Ħ	#	Ħ	Ħ	Ħ	Ħ		Ħ
		#	#	#	#	#	#	#	#	Ħ	H	#	Ħ	#	Ħ	\parallel	1	Ħ	#	#	Ħ			Ħ	Ħ	ŧ		H	H		#	Ħ	Ħ	Ħ	#	Ħ	Ħ	Ħ	Ħ		Ħ
			$\frac{1}{2}$	\blacksquare	#	#	#	#	ŧ	#			Ħ	#	Ħ		1		Ħ	#	Ŧ			ŧ	ŧ						ŧ	Ħ	Ħ	Ħ	#	#	Ħ		ŧ		Ħ
			#		#	#		#	#	#				#	#				#	#	1				1						1	1		1	#	1	1	ŧ	1		1
														#						#																					
					#			#	#	#				#					#	#	#												Ħ	Ħ		#			#		
		##	#		#	#	#	#	Ħ	Ħ				Ħ	Ħ				#	Ħ	Ħ			Ħ	Ħ				H		Ħ	Ħ	Ħ	Ħ		Ħ	Ħ	Ħ	Ħ		#
		##	#	#	#	#	#	#	Ħ	#	Ħ		Ħ	#	Ħ	\parallel	#	\longrightarrow		#					Ħ	Ì		1	H				Ħ	Ħ	#				Ħ		
					#	#		#	#	#				#	#			-		#		-													#			$\frac{1}{2}$			
														#																											
		#	#	#	#		#	#	#	#				#	#				#	#															#	#					
			\blacksquare		#			#	Ħ	Ħ			#	#	Ħ					Ħ	Ħ										Ħ	Ħ		Ħ		Ħ	Ħ		Ħ		
:回歸公式:				\blacksquare	\blacksquare	₽		\blacksquare	\blacksquare	Ī				Ī					∄	▋																					
	回歸	於	式:																																						

Formation of nanomachines 奈米機器的形成

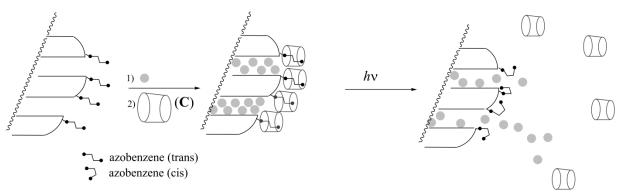


圖 5: 光啟動的異構化反應誘發偶氮苯-環糊精包合錯合物的解離,可使藥物(灰色球)釋放

將另一偶氮苯化合物(其 $K_c << K_t$),其起始型式為 trans,以共價鍵種植在玻璃片上 (圖 5),玻片上孔洞會填滿染料分子(玫瑰紅 B,rhodamine B,圖 5 中的灰色球)。當加入 C 時會形成包合錯合物堵住孔洞,避免染料分子釋放。

10. **選擇**最適當的條件**(單選)**,使孔洞在 C 的存在下,開始時為堵住狀態,而照光時會釋放染料分子。

 $\begin{array}{c|c} \square & K_t >> 1 \\ \square & K_t >> 1 \text{ and } K_c << 1 \\ \square & K_t / K_c << 1 \\ \square & K_t >> 1 \text{ and } K_c >> 1 \\ \square & K_c << 1 \end{array}$

將填有染料分子的偶氮苯-矽膠粉末,放入光析管的一個角落(圖 6),粉末不會溶出進入溶液。然後用波長 λ_1 的光照射粉末,以啟動染料分子自孔洞釋出(圖 5)。為了用光譜法值測釋出的染料分子,我們測量溶液在波長 λ_2 的吸光度。

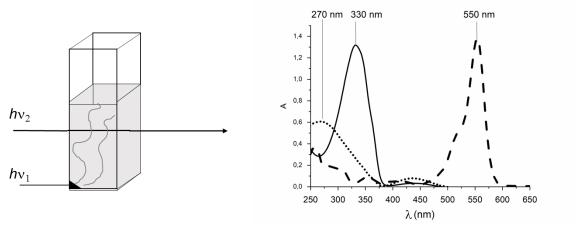


圖 6:左邊:監測染料分子釋放的實驗裝置;右邊:trans-偶氮苯(實線), cis-偶氮苯(點線)和玫瑰紅 B(虛線)的吸收光譜

11.<u>寫下</u>λι

λ_1 =	nm

12.<u>寫下</u>λ₂

λ_2 =	nm			

問題	小題	1	2	3	4	5	6	7	8	9	合計
T6	配分	4	4	5	3	10	2	9	6	5	48
8%	得分										

問題 T6: 團聯共聚物(block-copolymer)之鑑定

團聯共聚物是連結不同聚合物(團聯)而得,具有獨特性質,如自組裝的能力。本題將探討這類聚合物分子的合成與鑑定。

第一團聯的研究

在這部分,我們將探討一水溶性同聚物(homopolymer) 1。 (1 的英文名稱為 α-methoxy-ω-aminopolyethyleneglycol)

聚合物 1 之 ¹H NMR 光譜(DMSO-d₆, 60 °C, 500 MHz)包括下列訊號:

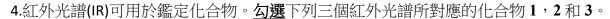
代號	δ (ppm)	訊號面積 Peak Area
a	2.7*	0.6
b	3.3	0.9
с	3.4	0.6
d	~ 3.5	133.7

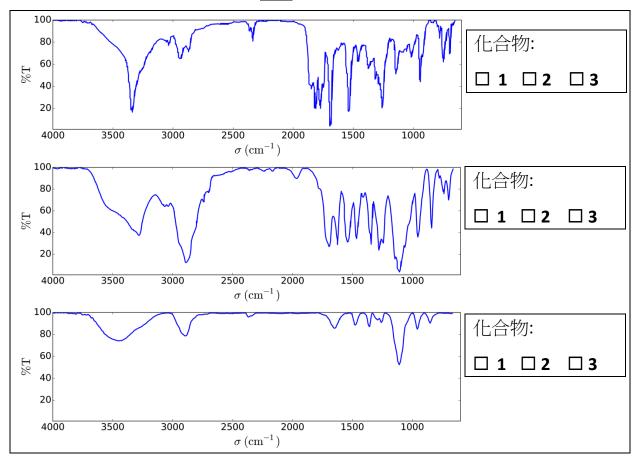
表一:*在D2O的存在下,2.7 ppm 的訊號消失

1.寫出各氫原子對應於表一中 ${}^{1}H$ NMR 訊號的代號(a, b, c, d)。

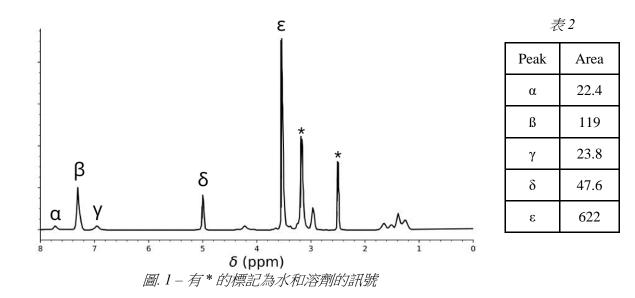
2.<u>寫出</u>平均聚合度 n 與 A_{OC2H4} (重複單元之 NMR 訊號的面積)和 A_{OCH3} (末端甲基之 NMR 訊號的面積)的關係,並**計算** n 。

n = 假如未能算出 n,以 n = 100 用於後續問題


二團聯共聚物(diblock-copolymer)的研究


共聚物之第二團聯的合成是由 1 和 2 反應而得,此反應產生團聯共聚物 3。 (2 的英文名稱為:ε-(benzyloxycarbonyl)-lysine N-carboxyanhydride)

$$O = \begin{pmatrix} H & H & O & H \\ NH & O & MH \\ O & MH & MH \\ O & MH & MH \\ O & MH & MH \\ MH & M$$


3. 將 $\mathbf{1}$ 加入 $\mathbf{2}$ 反應,第一步驟會產生中間體,<u>畫出</u>此中間體的結構;第二步驟會產生氣體分子 \mathbf{G} ,<u>畫出</u> \mathbf{G} 的結構。

G:

5. 圖 1 顯示共聚物 3 的 1 H NMR 光譜(in DMSO- d_6 , at 60 °C, 500 MHz)。利用部分或全部的 NMR 訊號(訊號面積列於表 2),來<u>計算</u>數目平均莫耳質量, M_n ,其中 n 來自於第 2 小題。在答案卷上<u>圈出</u>你在計算過程中所需使用的原子團,並<u>寫出</u>他們對應的訊號(α , β ...)。

 $M_{\rm n}$ = $\frac{{
m kg\ mol}^{-1}}{{
m 答案寫至小數點下二位}}$

在 40 °C 下,1 和 2 反應 20 小時,25 小時和 30 小時分別產生共聚物 3a ,3b 和 3c。 圖 2 顯示 SEC (size-exclusion chromatography,粒徑篩析層析)實驗的結果。

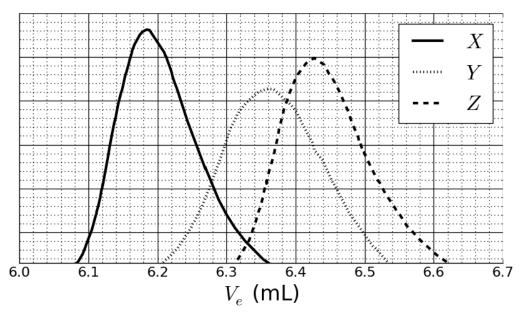


圖2:3a,3b 和3c 對應於沖提液體積Ve的SEC 層析圖。

6.**勾選**共聚物 3a,3b 和 3C 在圖 2 中的訊號。

3a:	$\square X$	$\square Y$	$\Box Z$	
3b:	$\square X$	$\square Y$	$\square Z$	
3c:	$\square X$	$\square Y$	$\square Z$	

為了得到層析圖的檢量線,使用已知莫耳質量 $(3,30,130,700 \text{ 和 } 7000 \text{ kg mol}^{-1})$ 的聚合物標準品混合物進行層析(圖 3)。<u>莫耳質量的對數值對沖提液(elution)體積 V_e 作圖為線性關係</u>。

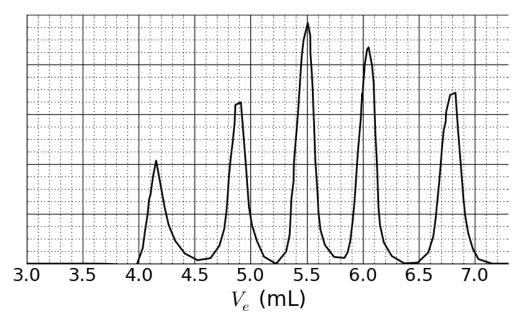
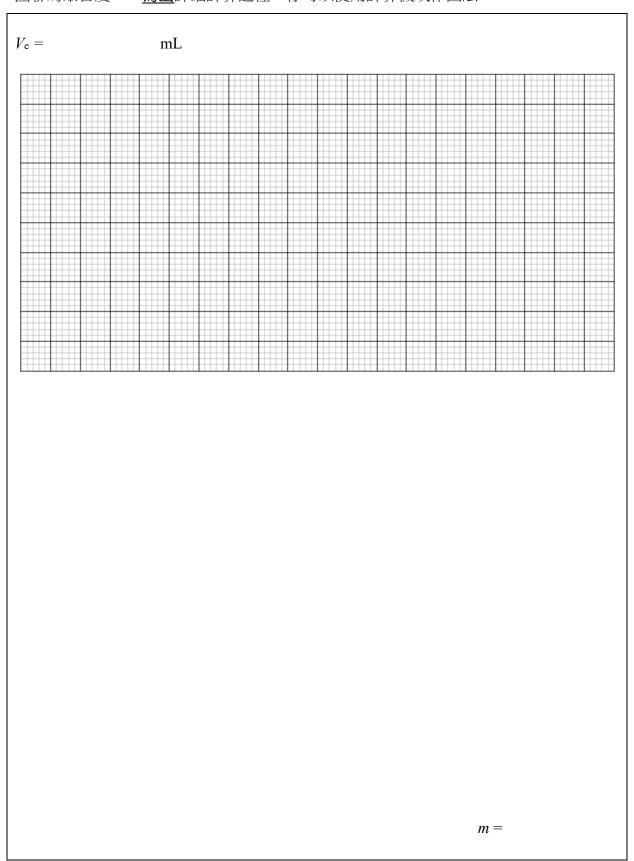



圖3:標準品混合物的SEC層析圖

7.根據圖 2 和 3 的 SEC 圖,<u>寫出</u>層析峰為 X 之對應聚合物的沖提體積 V_e ,並<u>計算</u>第二 團聯的聚合度 m。<u>寫出</u>詳細計算過程,你可以使用計算機或作圖法。

三團聯共聚物(Triblock copolymer)之合成

三團聯共聚物 9,可經由引入一中間團聯(middle block),B,與單體 5 反應而成。此共聚物可形成微胞(micelle)作為生物上的應用。

8.畫出 5,7 和 8 的結構式

5(反應產物只有 6:A-B, 沒有其他副產物)

7(在最後步驟有一氣體形成)

8

9.兩性團聯共聚物,如 9: A-B-C ,因其在水中會自組裝形成微胞(pH = 7),所以可用於醫療用途之藥物載體。 $\underline{\mathbf{a}}$ 此共聚物中,每一團聯對應之性質。假設只有 4 個聚合物鏈, $\underline{\mathbf{s}}$ 出在水中所形成微胞的結構示意圖。

A:	□疏水性	口親水性	
B : C :	□ 疏水性□ 疏水性	□ 親水性 □ 親水性	
C.	A WW	B	С
и	W W		

問題 T7: 在[2]交環烷([2]catenane)的環之運動

Problem	問題	1	2	3	4	5	6	7	8	9	10	11	Total
T7	配分	4	12	2	2	2	5	5	8	4	5	5	54
6%	得分												

西元 2016 年,諾貝爾化學獎頒給了 J.-P. Sauvage 和 J. F. Stoddart 以及 B. L. Feringa 所研究的"分子機器的設計與合成"。在諸多範例之一就是[2]交環烷,它是由兩個互鎖的環所組成的分子。在此系統中,其中一個巨環分子含有一個鄰二氮菲(phenanthroline),此為雙牙配基(bidentate),而第二個巨環分子則含有兩種配基:一是鄰二氮菲,另一個是2,2':6',2"-三聯吡啶(terpyridine),此為三牙配基(tridentate)。銅離子是被每個巨環分子的其中一個配基所配位鍵結。其配位化合物具有兩種結構組態,完全取決於銅的氧化數(+I 或+II)來決定,如圖 1。

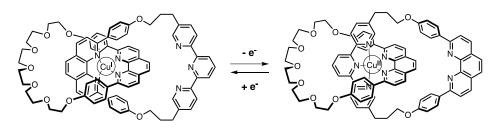


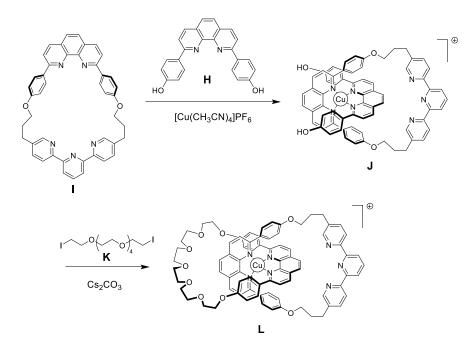
圖1環在[2]交環烷中的多重穩定性

巨環分子的合成過程如下:

$$\begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{Br} \\ \text{C} \\ \text{Cequiv.} \end{array}$$

1. **畫出 B** 的結構式。

B


2. <u>畫出</u>E,F及G的結構式。

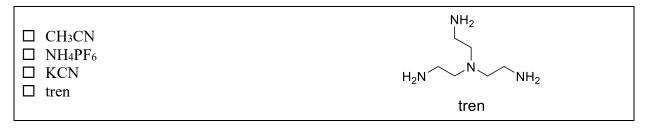
E
F
G
3. 在下列選項中, $\underline{勾選}$ 可從 D 反應得到 E 的反應條件。
\Box H ⁺ , H ₂ O
\square OH $^-$, H ₂ O
□ NaBH ₄ , CH ₃ OH
□ H ₂ , Pd/C, THF
4. 在合成的策略中,使用 MsCl 的目的是為了得到:
□ 離去基(a leaving group)
□ 保護基(a protecting group)
□ 去活化基(a deactivating group)
□ 引位基 (a directing group)
5. 由 F 與 LiBr 在丙酮中反應可以得到 G。這反應是屬於:
□ 親電芳香性取代反應(electrophilic aromatic substitution)
□ 親核芳香性取代反應(nucleophilic aromatic substitution)
□ 單分子親核取代反應(S _N 1)
□ 雙分子親核取代反應(S _N 2)

6. <u>畫出</u>反應 F→G 之速率決定步驟的過渡狀態,以 3D 幾何結構表示。只需畫出一個反應中心,主要的碳鏈以 R 來表示。

過渡狀態(Transition state):

[2]交環烷 L 的合成是利用銅錯合物的模板效應(template effect):

7. <u>寫出</u> Cu(0) 在基態的完整電子組態。 <u>給出</u>錯合物 J 中銅之氧化數,並寫出此種氧化數 之銅離子獨立存在時的電子組態。


 Cu(0)的電子組態:

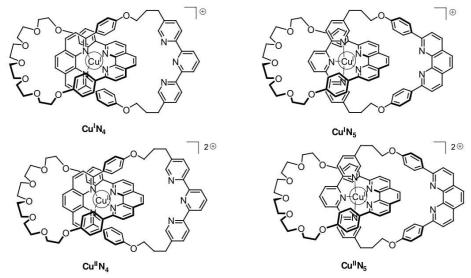
 在J中,銅的氧化數:

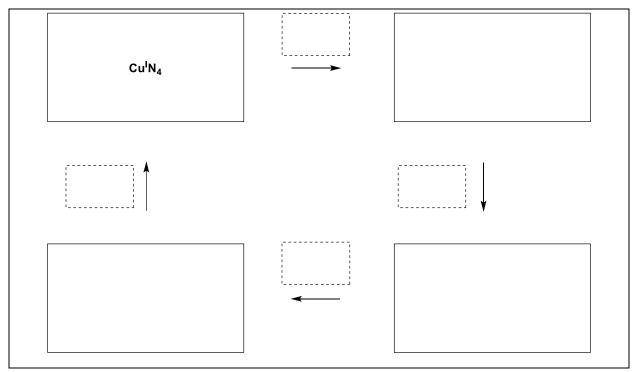
 在J中,銅的電子組態:

8. <u>勾選</u>在 L 中銅的幾何結構。假設在中心銅之周圍的配基位於理想的幾何結構,<u>畫出</u>於此結晶場中 d 軌域的能階分裂圖,並將電子<u>填入</u>分裂軌域中。針對此錯合物,x出總自旋量子數(S)的最大值。

在 L 中,銅的幾何結構 The geometry of Cu in L is:
□ 八面體形 (Octahedral)
□ 四面體形(Tetrahedral)
□ 平面四方形(Square planar)
□ 雙三角錐形(Trigonal bipyramid)
d 軌域的分裂與填入電子 (Splitting and filling of d orbitals):
總自旋量子數 $S=$

在[2]交環烷 L 中,銅離子存在兩種氧化數(+I) 或 (+II),且每種結構都具有不同的配位 圈(分別為四配位或五配位)。




圖 2 [2] 交環烷 L 的狀態

Cu(I)錯合物的穩定性可由其電子組態與鈍氣的電子組態相比較來推測。

10.在空白處填入數字或在空格中標記(打勾):

在金屬的配位圈結構中,CulN4錯合物具有	個電子。
在金屬的配位圈結構中,Cu ^I Ns 錯合物具有	個電子。
CulN₄錯合物的穩定度較 CulN₅ 錯合物為□更佳	/□更差

11. 在實線方格內<u>填入</u>圖 2 中所涉及的錯合物代號,並在虛線方格內填入 (旋轉: rotation); + e⁻; - e⁻等符號,以<u>完成</u>此系統之電化學控制流程。

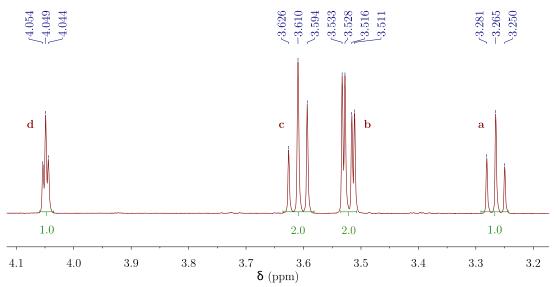
問題	小題	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	合計
T8	配分	2	6	2	2	11	2	4	3	4	2	6	8	2	6	4	64
6%	得分																

問題 T8: 肌醇(inositols)的鑑定與合成

在這個問題中,我們先定義了所謂的"3D結構"和"透視法結構式"。下圖為 β-葡萄糖 (Glucose)所呈現的樣式。

3D結構 透視法結構式

肌醇泛指 1, 2, 3, 4, 5, 6-六氫氧基環己烷。這些六元環的分子中,尤其是肌肉肌醇(myoinositol),參與了許多生物程序。


肌肉肌醇(myo-inositol)的結構

1. <u>畫出</u> 肌醇(inositols)的結構式,不需要畫出詳細的立體化學位向	

這個家族的分子包含了9種不同的立體異構物,包含光學異構物

2. 畫出所有具有光學活性的立體異構物的 3D 結構

某一特殊肌醇的結構,名為肌肉肌醇(myo-inositol),將在這裡被討論。其中有一種椅型結構特別穩定占絕大多數,而且此結構可以經由 NMR 的氫譜分析推導出來。下列的光譜是樣品在重水中(D2O)利用 600 MHz 所測量的。這個分子所有的訊號都出現在此光譜當中,每一個訊號的積分值也顯示在光譜中。

3. <u>寫出</u>這個從肌肉肌醇(myo-inositol)衍生出的主要化合物的分子式,而且這個分子式可以圓滿地解釋在 NMR 氫譜中所觀察到的氫的數目。

4. 基於氫訊號的數量和積分,<u>有幾個</u>對稱平面存在於此分子當中。

5. <u>完成</u>下列肌肉肌醇(myo-inositol)最穩定構型的透視畫法,然後根據上面 NMR 的結果 標記每個氫相對應的字母(a, b, c 或 d)。在下列的表示法中氫原子 a 必須連接於碳原子 a 上。接著,畫出其 3D 結構。

肌醇(inositols)的合成

對於藥物應用而言,能夠大量地合成一些肌醇(inositols)磷酸酯是很有幫助的。我們將研究從溴二醇(bomodiol) 1 來合成肌醇(inositols) 2。

6. 選擇化合物 2 和 3 之間正確的結構上關係

- □ 鏡像異構物 enantiomers
- □ 差向異構體 epimers
- □ 非鏡像異構物 diastereomers
- □ 阻轉異構物 atropoisomers

肌醇(inositols) 2 可從化合物 1 經由七個步驟而獲得

7. <u>畫出</u> 化合物 4 的 3D 結構				
4				
8. 可以獲得化合物 5 的反應是發生在具有最環己二烯(1-bromo-1,3-cyclohexadiene)的結構有最高電子密度的雙鍵,接著分別畫出可以造成雙鍵有不同電子密度的現象。	構,它為化合物 4 的部分結構。首先 <u>圈出</u> 具			
Br				
9. 畫出 主要的非鏡像異構物 5 的 3D 結構。				
5				
10. 從單一鏡像化合物 1 開始合成,可得到3	有多少個 屬於產物 5 的 立體異構物?			
11. 從化合物 5 轉換到化合物 6,同時可以產生另一個具有相同分子式的產物 6。 畫出化合物 6 和 6'的 3D 結構。				
6	6'			

12	<u>畫出</u> 主要的非鏡像異構物 8 和 9 的 3D 結	構
8		9
13.	選出可以獲得化合物 2 的最佳反應條件 A	. •
	H ₂ , Pd/C K ₂ CO ₃ , HF HCOOH, H ₂ O BF ₃ ·OEt ₂	
體	.假設溴原子不存在化合物 1 時,除了可以 異構物。如果在此合成的步驟中,反應的 另一個立體異構物的 3D 結構,並 <u>選出</u> 它與	
П	鏡像異構物(enantiomers)	
	差向異構體(epimers) 非鏡像異構物(diastereoisomers) 阻轉異構物(atropoisomers)	
15.	. 從化合物 1 合成至化合物 2 的過程, <u>選出</u> 以去除取代基(directing groups)的步驟。	所有可以去除保護基(protecting groups)和
	$ \begin{array}{c c} \hline & 1 \to 4 \\ \hline & 4 \to 5 \\ \hline & 5 \to 6 \end{array} $	
	$ \begin{array}{ccc} \Box & 5 \rightarrow 6 \\ \Box & 6 \rightarrow 7 \\ \Box & 7 \rightarrow 8 \\ \Box & 8 \rightarrow 9 \end{array} $	

問題	小題	1	2	3	4	5	6	7	8	9	10	11	12	13	合計
T9	配分	2	2	4	3	2	17	1	1	2	4	2	2	2	44
7%	得分														

問題 T9: 左旋布比卡因(levobuvacaine)的合成

第一部分

局部麻醉劑左旋布比卡因(levobuvacaine,以商標名 Marcaine 銷售)被列入世界衛生組織基本藥物清單內。雖然目前使用的藥物是左旋及右旋的混合物,但實驗已證明左旋的布比卡因(levobuvacaine)比較安全。左旋布比卡因(levobuvacaine)可以從天然氨基酸 L-賴氨酸(L-Lysine)合成而來

$$CI^ H_3N$$
 O

L-Lysine hydrochloride

L-賴氨酸鹽酸鹽

1. <u>選出</u>L-賴氨酸(L-Lysine)鹽酸鹽其立體中心的絕對構型(configuration),並且排列出取代 基的優先順序來**證明**你的答案

<u> </u>	4.63 6.70
構型 configuration:	優先順序 Priority 1 > 2 > 3 > 4:
$\square R$ $\square S$	$NH_3^{\dagger}_{Cl}^ NH_3^+$ $COO^ H$

2. L-賴氨酸(L-Lysine)的字首 L 代表的是其相對構型。選出正確的陳述

所有天然 L-form 的氨基酸都是左旋的(All natural L-amino acids are levorotatory)				
天然 L-form 的氨基酸可能是左旋也可能是右旋				
(Natural L-amino acids can be levorotatory or dextrorotatory)				
所有天然 L-form 的氨基酸都是 S form 絕對構型 (All natural L-amino acids are (S))				
所有天然 L-form 的氨基酸都是 R form 絕對構型 (All natural L-amino acids are (R))				

通常我們希望 L-賴氨酸(L-Lysine)進行反應時,能夠讓其中一個胺基進行反應即可。在此我們可以利用含 Cu²+的鹽類與含有過量的氫氧根的水溶液來選擇性地遮蔽一個胺基,以避免它發生反應。當錯合物形成之後,此時只有一個屬於非配位性的胺基可以進行後續反應。

3. 因為 L-賴氨酸(L-Lysine)具有雙牙基配位的特性。一個 Cu^{2+} 離子可與兩個 L-賴氨酸(L-Lysine)分子進行配位,**書出**此錯合物的結構。

錯合物的結構		

幸運的是,在下列顯示的合成左旋布比卡因(levobuvacaine)過程中,可以觀察到相似的選擇性但不需要使用含 Cu^{2+} 的鹽類。

$$\begin{array}{c} \text{Cl}^- \\ \text{H}_3 \\ \text{N} \\ \text{L-Lysine} \\ \text{hydrochloride} \\ \end{array} \begin{array}{c} \text{1) 1 eq. LiOH} \\ \text{2) 1 eq. PhCHO} \\ \end{array} \begin{array}{c} \text{A} \\ \end{array} \begin{array}{c} \text{1) NaOH, Cbz-Cl} \\ \text{2) diluted HCl} \\ \text{3) aqueous buffer} \\ \text{pH 6.2} \\ \end{array} \begin{array}{c} \text{B} \\ \text{C}_{14} \\ \text{H}_{20} \\ \text{N}_{2} \\ \text{O}_{4} \\ \end{array} \\ \end{array} \begin{array}{c} \text{NaNO}_{2}, \text{NaOAc} \\ \text{AcOH} \\ \text{C}_{16} \\ \text{H}_{21} \\ \text{NO}_{6} \\ \end{array} \begin{array}{c} \text{C} \\ \text{NH}_{2} \\ \text{DCC} \\ \end{array} \begin{array}{c} \text{D} \\ \text{1) K}_{2} \\ \text{CO}_{3}, \\ \text{H}_{2} \\ \text{2) TsCl, NEt}_{3} \\ \end{array} \begin{array}{c} \text{E} \\ \text{C}_{29} \\ \text{H}_{34} \\ \text{N}_{2} \\ \text{O}_{6} \\ \end{array} \\ \begin{array}{c} \text{AcO} \\ \text{AcO} \\ \text{C}_{18} \\ \text{H}_{28} \\ \text{N}_{2} \\ \end{array} \begin{array}{c} \text{C}_{18} \\ \text{H}_{28} \\ \text{N}_{2} \\ \end{array} \begin{array}{c} \text{Cl} \\ \text{NEt}_{3} \\ \end{array} \begin{array}{c} \text{Levobupivacaine} \\ \text{C}_{18} \\ \text{H}_{28} \\ \text{N}_{2} \\ \end{array} \begin{array}{c} \text{Cl} \\ \text{Cbz-Cl} \\ \end{array} \begin{array}{c} \text{Cl} \\ \text{Cbz-Cl} \\ \end{array} \begin{array}{c} \text{Cl} \\ \text{N}_{2} \\ \text{Cl} \\ \text{Cl} \\ \end{array} \begin{array}{c} \text{Cl} \\ \text{N}_{3} \\ \text{Cl} \\ \text{$$

從瑪	l在開始,你可以使用上列步驟中所提及的縮寫代號
4. <u>書</u>	<u>出</u> 化合物 A 的結構,包含其適當的立體化學。
A	
5. L	-賴氨酸(L-lysine)轉變成A屬於哪種類型的反應,選出合適的答案。
]鏡像選擇性反應 (an enantioselective reaction)
] 鏡像專一性反應 (an enantiospecific reaction)

□ 區域選擇性反應 (a regioselective reaction)

6. <u>書出</u>化合物 B 到 F 的結構包含其適當的立體化學

B C ₁₄ H ₂₀ N ₂ O ₄	C C ₁₆ H ₂₁ NO ₆
D	E C ₂₉ H ₃₄ N ₂ O ₆ S
$\mathbf{F} \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{N}_2 \mathrm{O}_4 \mathrm{S}$	
7. 在 C 轉變成 D 的過程,DCC 作為甚麼角1	<u>五</u>

Ш	作為胺基的保護基(I	rotecting group for the amino group)
	作為氫氧基的保護基	(Protecting group for the hydroxy group)

[□] 作為醯胺鍵(amide bond)形成的活化劑 (Activating agent for the amide bond formation)

8. TsCl 反應中的用途,可幫助							
□ 胺基進行親核性取代 (Nucleophilic substitution of an amino group) □ 胺基進行親電子性取代 (Electrophilic substitution of an amino group) □ 氫氧基進行親核性取代 (Nucleophilic substitution of a hydroxy group) □ 氫氧基進行親電子性取代 (Electrophilic substitution of a hydroxy group)							
9. <u>選出</u> 所有可能作為試劑 H 使用的試劑:							
☐ diluted HCl	□ Zn/HCl						
\square K ₂ CO ₃	\square H ₂ SO ₄						
☐ diluted KMnO₄	☐ diluted NaOH						
\square SOCl ₂	□ PCl ₅						
10. <u>畫出</u> 左旋布比卡因(Levobuvacaine)的結構,	並包含適當的立體化學。						
Levobupivacaine C ₁₈ H ₂₈ N ₂ O	Levobupivacaine C ₁₈ H ₂₈ N ₂ O						

第二部分

左布比卡因(levobuvacaine)的合成需要使用 L-賴氨酸(L-lysine)的單一鏡像化合物。確認 氨基酸單一鏡像化合物的常用方法是使用 Mosher's acid 將其轉化為醯胺(參見下面 S 構型的 Mosher's acid)

11. <u>畫出</u> L-賴氨酸(L-lysine)的胺基經由(S)-Mosher's acid 衍生化所形成的醯胺結構,並清楚地表達出每一個對掌中心的立體化學

12.如果使用外消旋混合的 L-賴氨酸(L-lysine)與(S)-Mosher's acid 反應,會<u>有多少個</u>產物形成? (如果考慮只有一個胺基可以反應)

□ 兩個非鏡像異構物(Two diastereoisomers)
□ 四個非鏡像異構物(Four diastereoisomers)
□ 兩個鏡像異構物所得的外消旋混合物(A racemic mixture of two enantiomers)
□ 四個化合物包含兩個鏡像異構物和兩個非鏡像異構物(Four compounds: two enantiomers and two diastereoisomers)

13. <u>選出</u>可以用來量化決定 L-賴氨酸(L-lysine)與(S)-Mosher's acid 反應後鏡像異構物的純度的方法。

□ NMR 光譜 NMR spectroscopy.
□ 液態層析 Liquid chromatography.
□ 質譜儀 Mass spectrometry.
□ 紫外光-可見光光譜 UV-vis spectroscopy.