Examen Pratique

Making science together!

2019-07-24

Instructions générales

- Ce livret pratique contient 29 pages.
- Avant de commencer l'examen pratique, l'instruction **Read** est donnée. Vous aurez 15 minutes pour lire le livret d'examen. Vous ne pouvez que **lire** pendant ce temps ; **ne pas écrire ou utiliser la calculatrice**.
- Vous pouvez commencer à travailler dès que l'instruction **Start** est donnée. Vous aurez alors **5 heures** pour réaliser l'examen.
- Vous pouvez travailler sur les problèmes dans n'importe quel ordre, mais il est recommandé de commencer par le problème P1.
- Tous les résultats et réponses doivent être clairement écrits **au bic dans leurs cadres respectifs** sur les feuilles d'examen. Les réponses écrites en dehors de ces cadres ne seront pas cotées.
- Si vous avez besoin de feuilles de brouillon, utilisez le verso des feuilles d'examen. Souvenezvous que **rien en dehors des cadres prévus ne sera coté**.
- La version officielle en anglais du livret d'examen est disponible sur simple demande, dans un but de clarification uniquement.
- Si vous avez besoin de quitter le laboratoire (pour utiliser les toilettes ou pour boire ou manger), levez la carte appropriée. Un assistant de laboratoire viendra pour vous accompagner.
- Les étagères au-dessus des paillasses ne devront pas être utilisées pendant l'épreuve dans un but d'égalité.
- Vous devez **respecter les règles de sécurité** données dans le règlement IChO. Si vous enfreignez les règles de sécurité, vous recevrez un seul avertissement de l'assistant de laboratoire. Toute violation des règles de sécurité avec le premier avertissement résultera en votre exclusion du laboratoire et une cote nulle pour votre examen pratique.
- Les produits chimiques et la verrerie, sauf si spécifié autrement, seront remplis à nouveau ou remplacés sans pénalité pour le premier incident uniquement. Pour chaque incident suivant, 1 point sera retiré des 40 points de l'examen pratique.
- Le responsable du laboratoire fera une annonce 30 minutes avant l'instruction **Stop**.
- Vous devez arrêter votre travail immédiatement lorsque l'instruction **Stop** est annoncée. Si vous n'arrêtez pas de travailler ou d'écrire dans la minute, vous recevrez une cote nulle pour votre examen pratique.
- Après que l'instruction **Stop** a été donnée, le responsable du laboratoire viendra pour signer votre feuille de réponse.
- Après que le responsable et vous avez signé, mettez ce livret d'examen dans l'enveloppe et rendezle pour cotation, avec votre produit et vos plaques de chromatographie sur couche mince (CCM).

Règles de laboratoire et de sécurité

- Vous devez porter un tablier de laboratoire et le garder boutonné. Vos chaussures doivent couvrir complètement vos pieds et talons.
- Portez en permanence des lunettes de sécurité ou des lunettes correctrices lorsque vous travaillez dans le laboratoire. Les lentilles de contact sont interdites.
- Ne mangez et ne buvez pas dans le laboratoire. Les chewing-gums ne sont pas autorisés.
- Ne travaillez que dans les espaces prévus. Gardez votre zone de travail et les zones communes propres.
- Les expériences non autorisées ne sont pas permises. Les modifications des expériences ne sont pas permises.
- Ne pipetez pas à la bouche. Utilisez toujours une poire pour pipette.
- Nettoyez les produits renversés et la verrerie cassée immédiatement, à la fois sur la paillasse et au sol.

BEL_3

• Tous les déchets doivent être jetés correctement pour éviter les contaminations et les blessures. Les solutions aqueuses peuvent être jetées à l'évier. Les déchets organiques doivent être jetés dans le récipient fermé indiqué.

Constantes physiques et équations

Dans ces épreuves, on suppose que les activités de toutes les espèces aqueuses peuvent être approximées par leurs concentrations respectives en mol L-1. Pour simplifier les formules et expressions, la concentration standard $c^{\circ} = 1 \text{ mol } L^{-1}$ est omise.

 $N_{\rm A} = 6.022 \cdot 10^{23} \, \text{mol}^{-1}$ Constante d'Avogadro: $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ Constante universelle des gaz parfaits :

Pression standard:

 $P_{\text{atm}} = 1 \text{ atm} = 1,013 \text{ bar} = 1,013 \cdot 10^5 \text{ Pa}$ Pression atmosphérique :

Zéro de l'échelle Celsius: 273,15 K Constante de Faraday:

Watt:

Kilowatt-heure: Constante de Planck:

Vitesse de la lumière dans le vide :

Charge élémentaire: Puissance électrique:

Rendement de puissance :

Relation de Planck-Einstein:

Equation des gaz parfaits : Energie libre de Gibbs:

Quotient réactionnel Q pour une équation

a A(aq) + b B(aq) = c C(aq) + d D(aq):

Equation de Henderson-Hasselbalch:

Equation de Nernst-Peterson:

où Q est le quotient réactionnel de la demi-réaction de réduction

Loi de Beer-Lambert:

Lois de vitesse intégrées

- Ordre un:

- Ordre deux:

Demi-vie pour un processus d'ordre un :

Masse molaire moyenne en nombre M_n :

Masse molaire moyenne en masse M_w :

Dispersité I_p :

 $p^{\circ} = 1 \text{ bar} = 10^{5} \text{ Pa}$

 $F = 9,649 \cdot 10^4 \text{ C mol}^{-1}$

 $1 \text{ W} = 1 \text{ J s}^{-1}$

 $1 \text{ kWh} = 3.6 \cdot 10^6 \text{ J}$

 $h = 6.626 \cdot 10^{-34} \text{ J s}$

 $c = 2.998 \cdot 10^8 \text{ m s}^{-1}$ $e = 1.6022 \cdot 10^{-19} \,\mathrm{C}$

 $P = \Delta E \times I$

 $\eta = P_{\text{obtenu}}/P_{\text{appliqué}}$

 $E = hc/\lambda$

pV = nRT

G = H - TS

 $\Delta_{\rm r}G^{\circ} = -RT \ln K^{\circ}$ $\Delta_{\rm r}G^{\circ} = -n \ F \ E_{\rm cell}^{\circ}$

 $\Delta_{\rm r}G = \Delta_{\rm r}G^{\circ} + RT \ln Q$

 $Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

 $pH = pK_a + \log \frac{[A^-]}{[AH]}$

 $E = E^{o} - \frac{RT}{2E} \ln Q$

at $T = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0,059 \text{ V}$

 $A = \varepsilon lc$

- Ordre zéro : $[\mathbf{A}] = [\mathbf{A}]_0 - kt$

 $\ln[A] = \ln[A]_0 - kt$

 $1/[A] = 1/[A]_0 + kt$

 $t_{1/2} = \ln 2/k$

 $M_{\rm n} = \frac{\sum_{\rm i} N_{\rm i} M_{\rm i}}{\sum_{\rm i} N_{\rm i}}$

 $M_{\rm w} = \frac{\sum_{\rm i} N_{\rm i} M_{\rm i}^2}{\sum_{\rm i} N_{\rm i} M_{\rm i}}$

 $I_{\rm p} = \frac{M_{\rm w}}{M_{\rm w}}$

Remarque

Les unités d'une concentration molaire sont « M » ou « mol L^{-1} »:

 $1 \text{ M} = 1 \text{ mol } L^{-1}$ $1 \text{ mM} = 10^{-3} \text{ mol } L^{-1}$ $1 \mu M = 10^{-6} \text{ mol } L^{-1}$

Tableau périodique

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3	4											5	6	7	8	9	10
Li 6.94	Be 9.01											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Αl	Si	Р	S	CI	Ar
22.99	24.31											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22 T :	23	24	25 N 4	26	27	28 N.I.:	29	30	31	32	33	34	35 D.:	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37 Dh	38 C r	39 Y	Zr	41 NJh	42 N/1 0	43 T o	44 D	Rh	46 Dd	47 A ~	48 Cd	49 In	50 Cn	Sb	52 T	53 I	Xe
Rb 85.47	Sr 87.62	I 88.91	∠I 91.22	Nb 92.91	Mo 95.95	Tc	Ru 101.1	102.9	Pd 106.4	Ag	Cd	In 114.8	Sn 118.7	121.8	Te	I 126.9	131.3
55	56	00.51	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57-71	Hf	Ta	W	Re	Os	İr	Pt	Au	Hg	ΤI	Pb	Bi	Po	Åt	Rn
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0		-	-
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89- 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
-	-		-	-	-	-	-	-	-	٠,	-	-	-	-	-	-	-

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138.	9 140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
A	: Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
-	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

Définition des mentions GHS

Les mentions de danger GHS (phrases H) associées avec les produits chimiques utilisés sont indiquées dans les problèmes. Leurs significations sont les suivantes.

Dangers physiques

- H225 Liquide et vapeurs très inflammables.
- H226 Liquide et vapeurs inflammables.
- H228 Matière solide inflammable.
- H271 Peut provoquer un incendie ou une explosion; comburant puissant.
- H272 Peut aggraver un incendie; comburant.
- H290 Peut être corrosif pour les métaux.

Dangers de santé

- H301 Toxique en cas d'ingestion.
- H302 Nocif en cas d'ingestion.
- H304 Peut être mortel en cas d'ingestion et de pénétration dans les voies respiratoires.
- H311 Toxique par contact cutané.
- H312 Nocif par contact cutané.
- H314 Provoque de graves brûlures de la peau et des lésions oculaires.
- H315 Provoque une irritation cutanée.
- H317 Peut provoquer une allergie cutanée.
- H318 Provoque des lésions oculaires graves.
- H319 Provoque une sévère irritation des yeux.
- H331 Toxique par inhalation.
- H332 Nocif par inhalation.
- H333 Peut être nocif par inhalation.
- H334 Peut provoquer des symptômes allergiques ou d'asthme ou des difficultés respiratoires par inhalation.
- H335 Peut irriter les voies respiratoires.
- H336 Peut provoquer somnolence ou vertiges.
- H351 Susceptible de provoquer le cancer.
- H361 Susceptible de nuire à la fertilité ou au fœtus.
- H371 Risque présumé d'effets graves pour les organes.
- H372 Risque avéré d'effets graves pour les organes.
- H373 Risque présumé d'effets graves pour les organes.

Dangers environnementaux

- H400 Très toxique pour les organismes aquatiques.
- H402 Nocif pour les organismes aquatiques.
- H410 Très toxique pour les organismes aquatiques, entraîne des effets à long terme.
- H411 Toxique pour les organismes aquatiques, entraı̂ne des effets à long terme.
- H412 Nocif pour les organismes aquatiques, entraı̂ne des effets à long terme.

Composés chimiques

Pour tous les problèmes

i dai todo los problemes						
Produits chimiques	Étiquetés comme	Mentions de danger GHS				
Eau désionisée dans :						
- Pissette (paillasse)	Deionized Water	Non dongorous				
- Bouteille en plastique (paillasse)	Defonized water	Non dangereux				
- Bidon en plastique (hotte)						
Éthanol, dans une pissette	Ethanol	H225, H319				
Échantillon de vin blanc, 300 mL,						
dans une bouteille en plastique	Wine sample	H225, H319				
brune						

Pour le problème P1

Produits chimiques	Étiquetés comme	Mentions de danger GHS
4-nitrobenzaldéhyde, 1,51 g dans un flacon en verre brun	4-nitrobenzaldehyde	H317, H319
Éluant A, 20 mL dans un flacon en verre	Eluent A	H225, H290, H304, H314, H319, H336, H410
Éluant B, 20 mL dans un flacon en verre	Eluent B	H225, H290, H304, H314, H319, H336, H410
Oxone [®] (peroxymonosulfate de potassium), 7,87 g dans une bouteille en plastique	Oxone®	H314
Echantillon de 4-nitrobenzaldéhyde pour CCM	TLC standard	H317, H319

Produits chimiques	Étiquetés comme	Mentions de danger GHS
Solution 1 M en thiocyanate de potassium, 20 mL dans une bouteille en plastique	KSCN 1 M	H302+H312+H332, H412
Solution 0,00200 M en thiocyanate de potassium, 60 mL dans une bouteille en plastique	KSCN 0.00200 M	Non dangereux
Solution 1 M en acide perchlorique, 10 mL dans une bouteille en plastique	HClO ₄	H290, H315, H319
Solution 0,00200 M en fer(III), 80 mL dans une bouteille en plastique	Fe(III) 0.00200 M	Non dangereux
Solution 0,000200 M en fer(III), 80 mL dans une bouteille en plastique	Fe(III) 0.000200 M	Non dangereux
Solution 0,3% en peroxyde d'hydrogène, 3 mL dans une bouteille en verre brune	H ₂ O ₂	Non dangereux

Produits chimiques	Étiquetés comme	Mentions de danger GHS
Solution 0,01 M en iode, 200 mL dans	т.	H372
une bouteille en verre brune	I_2	H3/2
Solution 0,03 M en thiosulfate de		
sodium, 200 mL dans une bouteille en	Na ₂ S ₂ O ₃	Non dangereux
plastique		
Solution 1 M en NaOH, 55 mL dans	NaOH	H290, H314
une bouteille en plastique	NaOH	П290, П314
Solution 2,5 M en acide sulfurique,	H ₂ SO ₄	H290, H315, H319
80 mL dans une bouteille en plastique	П25О4	H290, H313, H319
Solution 0,5 M en iodure de		
potassium, 25 mL dans une bouteille	KI	H372
en plastique		
Iodate de potassium, environ 100 mg		
(masse exacte sur l'étiquette), dans un	KIO ₃	H272, H315, H319, H335
flacon en verre		
Empois d'amidon, 25 mL dans une	Stoneh	Non dengarauy
bouteille en plastique	Starch	Non dangereux

Équipement Pour tous les problèmes

Équipement personnel	Quantité
Poire pour pipette	1
Lunette de sécurité	1
Bouteille en plastique de 1 L pour les déchets	1
organiques, étiquetée « Organic waste »	1
Serviettes en papier	15 feuilles
Serviettes de précision	30 feuilles
Spatule (grande)	1
Spatule (petite)	1
Chronomètre	1
Crayon	1
Gomme	1
Bic noir	1
Feutre pour la verrerie	1
Règle	1

Équipement partagé	Quantité
Lampe UV pour la visualisation des CCM	2 par labo
Colorimètre	5 par labo
	Toutes les tailles (S, M, L, XL)
Gants	disponibles sur demande à un
	assistant de laboratoire
Seau à glace	1 par labo

Équipement personnel	Quantité
Statif avec :	1
- Noix avec petite pince	2
- Noix avec grande pince	1
Erlenmeyer à col rodé, 100 mL	1
Erlenmeyer à col rodé, 50 mL	1
Réfrigérant	1
Plaque chauffante à agitation magnétique	1
Cristallisoir	1
Barreau magnétique	1
Vase de Büchner	1
Entonnoir de Büchner avec joint en caoutchouc	1
Sachet fermé avec 3 filtres en papier	1
Boîte de Petri	1
Chambre d'élution CCM, étiquetée « TLC elution	1
chamber »	1
Sachet fermé avec 3 plaques CCM (avec indicateur	1
fluorescent), étiqueté BEL_3	1
Capillaires pour CCM (dans la boîte de Petri)	4
Pince en plastique	1
Baguette en verre	1
Pied gradué, 25 mL	1
Berlin, 150 mL	2

Entonnoir à poudre en plastique	1
Pipette en plastique jetable	2
Flacon en verre brun, pour l'échantillon CCM, 1,5 mL,	2
avec bouchon, étiqueté C et R	2
Flacon en verre brun pré-pesé, 10 mL, avec bouchon,	1
étiqueté BEL_3	1
Tige pour récupérer le barreau magnétique	1

Pour le problème P2

Équipement personnel	Quantité
Pipette jaugée, 10 mL	1
Pipette graduée, 10 mL	3
Pipette graduée, 5 mL	3
Support pour tubes à essai	1
Tube à essai	15
Bouchon pour tube à essai	7
Cuvette colorimétrique, longueur 1,0 cm	2
Berlin, 100 mL	2
Pipette en plastique jetable	15

Pour le problème P3				
Équipement personnel	Quantité			
Statif avec pince pour burette	1			
Burette, 25 mL	1			
Entonnoir en verre	1			
Erlenmeyer, 100 mL	3			
Erlenmeyer, 250 mL	3			
Berlin, 150 mL	1			
Berlin, 100 mL	2			
Ballon jaugé, 100 mL, avec bouchon	1			
Pipette jaugée, 50 mL	1			
Pipette jaugée, 25 mL	1			
Pipette jaugée, 20 mL	1			
Pied gradué, 25 mL	1			
Pied gradué, 10 mL	1			
Pied gradué, 5 mL	1			
Pipette en plastique jetable	3			
Parafilm	20 feuilles			

Problème	Question	Rendement	Pureté	CCM	P1.1	P1.2	Total
P1 13% of	Points	12	12	8	2	3	37
total	Score						

Problème P1. L'oxydation du nitrobenzaldéhyde en chimie verte

Au cours des dernières décennies, les chimistes ont essayé de remplacer les réactifs nocifs dans les procédés d'oxydation afin de réduire le traitement des déchets toxiques. Dans ce problème, le peroxymonosulfate de potassium a été choisi comme agent oxydant, car il ne produit que des sels de sulfate non toxiques et non polluants. Il sera désigné ici par le terme Oxone[®].

De plus, la réaction se déroule dans un mélange eau-éthanol, considérés comme solvants verts.

Vous devez réaliser l'oxydation du 4-nitrobenzaldéhyde, recristalliser le produit, comparer deux éluants pour la CCM et vérifier la pureté du produit à l'aide de la CCM.

Remarque : l'éthanol utilisé et l'éluant doivent être jetés dans la bouteille étiquetée « Organic waste ».

Mode opératoire

I. Oxydation du 4-nitrobenzaldehyde

- 1. **Mélanger** 20 mL d'eau et 5 mL d'éthanol.
- 2. **Placer** le barreau magnétique dans l'Erlenmeyer à col rodé de 100 mL.
- 3. <u>Verser</u> l'entièreté de l'échantillon pré-pesé de 1,51 g de 4-nitrobenzaldéhyde dans l'Erlenmeyer. <u>Ajouter</u> tout le mélange eau-éthanol préparé précédemment. <u>Fixer</u> l'Erlenmeyer au statif. <u>Démarrer</u> l'agitation magnétique du mélange puis <u>ajouter</u> l'entièreté de l'échantillon pré-pesé de 7,87 g d'Oxone[®].
- 4. <u>Mettre en place</u> le réfrigérant en desserrant la grande pince et en ajustant les embouts rodés (voir figure 1). <u>Lever</u> la carte « HELP ». Un assistant viendra ouvrir le robinet d'eau et mettre en route la plaque chauffante.
- 5. <u>Chauffer</u> le mélange réactionnel pendant 45 minutes avec un léger reflux (environ une goutte par seconde). La marque sur la plaque chauffante correspond à la puissance nécessaire pour obtenir un léger reflux.

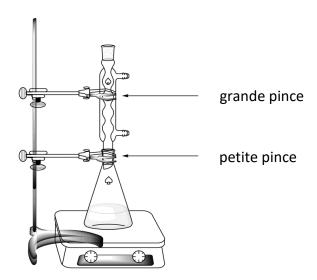


Figure 1. Montage de chauffage au reflux du mélange réactionnel

- 6. <u>Éteindre</u> la plaque chauffante, **l'enlever** et laisser le mélange réactionnel refroidir pendant 10 minutes. <u>Placer</u> l'Erlenmeyer dans un cristallisoir préalablement rempli d'un mélange eau-glace. Laisser reposer pendant 10 minutes.
- 7. <u>Mettre en place</u> le montage de filtration sous vide à l'aide d'un entonnoir de Büchner, d'un papier filtre et d'un vase de Büchner (voir figure 2). Fixer le vase de Büchner au statif à l'aide d'une petite pince. <u>Lever</u> votre carte « HELP ». Un assistant viendra vous montrer comment connecter le système d'aspiration au montage.

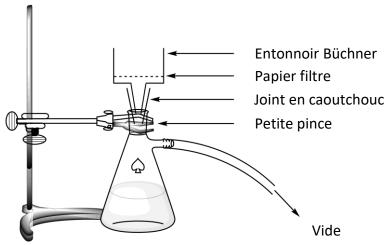


Figure 2. Montage de filtration sous vide

- 8. <u>Amorcer</u> le papier filtre avec de l'eau et <u>s'assurer</u> qu'il bouche tous les trous de l'entonnoir de Büchner.
- 9. <u>Verser</u> la suspension de produit brut dans l'entonnoir de Büchner et <u>brancher</u> le vide. <u>Laver</u> le précipité à l'eau désionisée (par au moins 4 × 20 mL).
- 10. <u>Continuer</u> l'aspiration pendant 5 minutes pour pré-sécher le produit. <u>Déconnecter</u> le tuyau d'aspiration. À l'aide de la petite spatule, <u>prélever</u> une pointe de spatule du produit et le transférer dans le flacon en verre brun de 1,5 mL <u>étiqueté C</u>. <u>Refermer</u> le flacon et le <u>conserver</u> pour la partie III.
- 11. <u>Transférer</u> tout le solide restant dans l'Erlenmeyer à col rodé de 50 mL.
- 12. <u>Jeter</u> le filtrat dans la bouteille étiquetée « Organic waste » et <u>laver</u> le vase de Büchner et le filtre de Büchner et l'entonnoir Büchner à l'éthanol et puis à l'eau. <u>Jeter</u> les déchets d'éthanol dans la bouteille étiquetée « Organic waste ».

II. Recristallisation du produit

- 1. Mélanger 9 mL d'eau et 21 mL d'éthanol.
- 2. À l'aide du montage à reflux (voir figure 1), <u>recristalliser</u> le produit brut présent dans l'Erlenmeyer à col rodé de 50 mL en utilisant la quantité nécessaire du mélange eau-éthanol préalablement réalisé. <u>Lever</u> votre carte « HELP ». Un assistant viendra ouvrir le robinet et mettre en route la plaque chauffante. Si nécessaire, <u>ajouter</u> du solvant supplémentaire par le haut du réfrigérant.

- 3. Une fois le produit recristallisé, <u>utiliser</u> la même méthode que celle décrite précédemment (I.7 à I.10) pour récupérer le solide. <u>Utiliser</u> la petite spatule pour prélever une pointe de spatule du produit recristallisé et le transférer dans le flacon en verre brun de 1,5 mL <u>étiqueté R</u>. <u>Refermer</u> le flacon et le <u>conserver</u> pour la partie III.
- 4. <u>Transférer</u> le produit purifié dans le flacon pré-pesé et étiqueté BEL_3. <u>Refermer</u> le flacon.
- 5. <u>Jeter</u> le filtrat dans la bouteille « Organic waste » et <u>lever</u> votre carte « HELP ». Un assistant viendra fermer le robinet d'eau du réfrigérant.

III. Analyse CCM

- 1. <u>Préparer la chambre d'élution CCM.</u> Y <u>verser</u> de l'éluant A jusqu'à une hauteur d'environ 0,5 cm. <u>Couvrir</u> à l'aide du couvercle de la boîte de Petri. <u>Attendre</u> que les vapeurs d'éluant saturent l'atmosphère de la chambre CCM.
- 2. <u>Préparer vos échantillons</u>. Un échantillon de 4-nitrobenzaldéhyde vous est fourni dans un flacon en verre brun étiqueté « TLC standard » (noté **S** sur la plaque CCM). Vous avez également conservé un petit échantillon de votre produit brut (flacon **C**) et de votre produit recristallisé (flacon **R**). <u>Ajouter</u> environ 1 mL d'éthanol dans chacun des flacons afin de dissoudre les échantillons.
- 3. Préparer votre plaque CCM. Utiliser un crayon pour tracer avec précaution la ligne de départ (à environ 1 cm du bas de la plaque) et marquer les positions des dépôts des 3 échantillons. Les noter S (réactif), C (produit brut) et R (produit recristallisé), comme décrit à la figure 3. En haut à gauche de votre plaque, écrire BEL_3. En haut à droite de votre plaque, écrire l'éluant utilisé (d'abord Eluent A, puis Eluent B). À l'aide des capillaires, déposer un spot pour chaque échantillon sur la plaque.

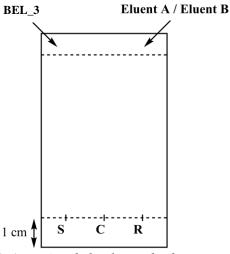
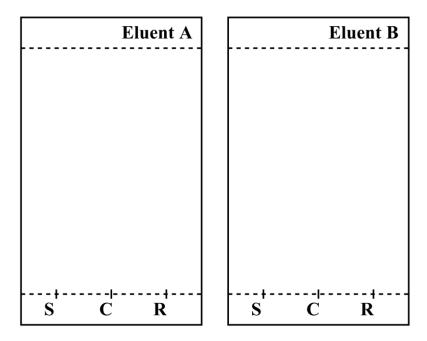



Figure 3. Préparation de la plaque de chromatographie

- 4. **Procéder à l'élution**. À l'aide de la pince en plastique, **placer** la plaque dans la chambre d'élution et la couvrir à l'aide du couvercle de la boîte de Petri. **Attendre** que l'éluant ait **atteint** environ 1 cm du haut de la plaque. À l'aide de la pince en plastique, **retirer** la plaque, tracer le front du solvant au crayon et laisser sécher la plaque à l'air.
- 5. <u>Révéler la plaque CCM</u>. <u>Placer</u> la plaque CCM sous la lampe UV qui se trouve sur la paillasse commune. À l'aide d'un crayon, **entourer** toutes les taches visibles.
- 6. Jeter l'éluant dans la bouteille étiquetée « Organic waste ».

- 7. **Répéter** les opérations 1, 3, 4, 5 et 6 avec l'éluant B.
- 8. <u>Mettre</u> vos plaques de chromatographie dans le sachet en plastique refermable étiqueté BEL_3.

Résultats de votre analyse CCM (<u>compléter</u> les schémas avec vos résultats). Vous pouvez utiliser les schémas ci-dessous pour reproduire vos plaques CCM, ce qui pourra vous aider à répondre aux questions suivantes. Les schémas ne seront pas notés.

À la fin de l'examen, le responsable du laboratoire viendra récupérer les objets suivants :

- le flacon en verre étiqueté BEL_3 et contenant votre produit recristallisé
- les deux plaques CCM A et B dans le sachet en plastique refermable étiqueté **BEL_3**.

Objets remis:		
Produit recristallisé		
Plaque CCM A		
Plaque CCM B		
Signatures	·	
	Étudiant	Responsable de laboratoire

BEL_3

Questions

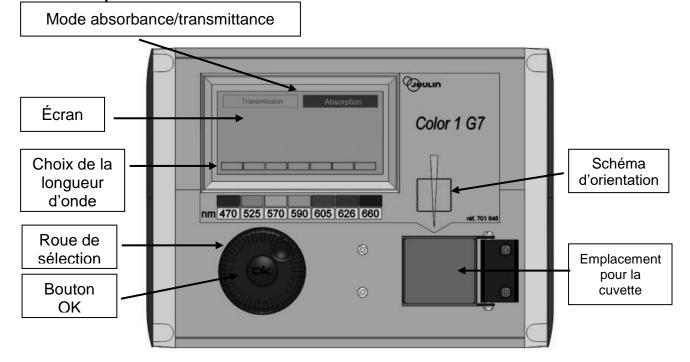
1.	Proposer une structure du produit organique final issu de la réaction entre le 4-nitrobenzaldéhyde et l'Oxone [®] .
2.	À l'aide de l'analyse de vos plaques CCM, <u>répondre</u> aux questions suivantes.
•	Quel est le meilleur éluant pour suivre l'avancement de la réaction ?
	\mathbf{A} \Box \mathbf{B}
•	Le produit brut (C) contient des traces de 4-nitrobenzaldéhyde.
_ \ \	Vrai 🗆 Faux
•	Le produit recristallisé (R) contient des traces de 4-nitrobenzaldéhyde.
_ \	Vrai □ Faux

BEL 3

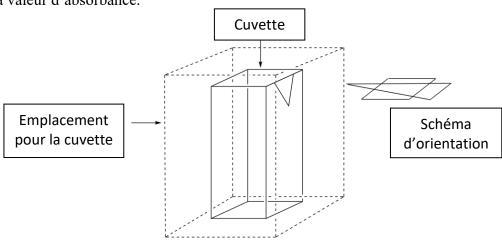
Problème P2	Question	Étalonnage	Dosage du fer	P2.1	P2.2	P2.3	Détermination de la stœchiométrie	P2.4	P2.5	Total
14% du total	Points	10	6	3	4	3	9	3	2	40
totai	Score									

Problème P2. L'âge de fer du vin

Le fer est un élément faisant partie de la composition naturelle du vin. Quand la concentration en fer dépasse 10 à 15 mg par litre, l'oxydation du fer(II) en fer(III) peut conduire à une perte de qualité à cause de la formation de précipités. Dès lors, il est nécessaire de vérifier la teneur en fer dans le vin lors de sa production.


Etant donné que le fer est présent en faible concentration, le complexe coloré du fer(III) avec le ligand thiocyanate SCN⁻ est employé pour quantifier le taux de fer par spectrophotométrie.

Vous devez déterminer la concentration totale en fer dans l'échantillon de vin blanc fourni, par spectrophotométrie, et déterminer la stœchiométrie du complexe fer(III)-thiocyanate.


REMARQUES

- Lors de ce problème, deux solutions de fer(III) et deux solutions de thiocyanate de potassium de concentrations différentes vous sont fournies. Faites attention à ne pas les confondre.
- Une fois les solutions prêtes pour les mesures spectrophotométriques, mesurer l'absorbance au plus tard une heure après l'addition de thiocyanate.
- Lorsque vous avez besoin d'un colorimètre, levez votre carte « HELP ». Un assistant vous donnera un colorimètre (identifié par un code). Vous avez alors l'accès exclusif à ce colorimètre pendant 15 minutes maximum. L'assistant reprendra le colorimètre dès que vous avez terminé ou à la fin des 15 minutes, le cas échéant. Dans le cas où aucun colorimètre n'est disponible, vous serez ajouté sur une liste d'attente.
- Les instructions d'emploi du colorimètre sont présentées à la page suivante.
- Vous pouvez demander un colorimètre trois fois au maximum lors de ce problème.

Mode d'emploi du colorimètre

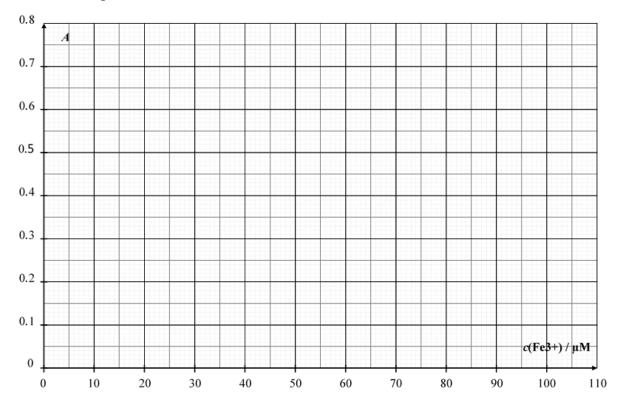
- Brancher le colorimètre à une prise électrique.
- Vérifier que le mode « Absorbance » est sélectionné. Si ce n'est pas le cas, tourner la roue de sélection afin qu'une ligne pointillée apparaisse autour du mot « Absorption » ; appuyer ensuite sur le bouton OK.
- Tourner la roue de sélection afin qu'une ligne pointillée apparaisse autour de la longueur d'onde désirée (470 nm). Appuyer sur le bouton OK.
- Mettre en place la cuvette remplie avec votre blanc sur une hauteur d'environ 3 cm. Faire attention à bien orienter la cuvette (regarder le schéma d'orientation sur le colorimètre, le faisceau incident est dans la direction de la flèche jaune, voir la figure ci-dessous) et à bien enfoncer la cuvette vers le bas jusqu'à sa position finale. Fermer le capot.
- Tourner la roue de sélection afin qu'une ligne pointillée apparaisse autour du mot « Absorption », appuyer ensuite sur le bouton OK. En tournant la roue, choisir « Calibration » et appuyer sur OK.
- Attendre jusqu'à ce que l'écran affiche 0.00 (ou -0.00).
- Mettre en place la cuvette remplie avec votre solution à analyser sur une hauteur d'environ 3 cm. Fermer le capot.
- Lire la valeur d'absorbance.

I. Dosage du taux de fer dans le vin

Lors de cette partie, vous devrez utiliser la solution $0,000200\,\mathrm{M}$ en fer(III) et la solution $1\,\mathrm{M}$ en thiocyanate de potassium.

Mode opératoire

1. <u>Préparer</u> 6 tubes à essai en ajoutant, pour chaque tube, les volumes de solution indiqués dans la table ci-dessous.


Tube n°	1	2	3	4	5	6
Solution 0,000200 M en fer(III)	1,0 mL	2,0 mL	4,0 mL	6,0 mL		
Solution 1 M en acide perchlorique	1,0 mL	1,0 mL				
Vin (« Wine sample »)					10,0 mL	10,0 mL
Solution de peroxyde d'hydrogène					0,5 mL	0,5 mL
Eau désionisée	9,5 mL	8,5 mL	6,5 mL	4,5 mL		1,0 mL

- 2. Fermer les tubes à l'aide des bouchons et homogénéiser.
- 3. <u>Ajouter</u> 1,0 mL de solution de thiocyanate de potassium 1 M dans les tubes 1, 2 3, 4 et 5. <u>Ne pas en ajouter</u> au tube 6. <u>Fermer</u> les tubes et <u>homogénéiser</u>.
- 4. Quand tous les tubes sont prêts, <u>lever</u> votre carte « HELP » pour que l'assistant vous donne accès au colorimètre.
- 5. <u>Préparer</u> le colorimètre en suivant la procédure décrite précédemment (voir page 18). <u>Sélectionner</u> 470 nm pour la longueur d'onde. <u>Utiliser</u> de l'eau désionisée pour votre blanc.
- 6. <u>Noter</u> l'absorbance pour chaque solution (tubes 1 à 6) à 470 nm. <u>Ecrire</u> vos résultats dans le tableau suivant. <u>Lever</u> votre carte « HELP » pour rendre le colorimètre.

Tube n°	1	2	3	4	5	6
Absorbance (à 470 nm)						
Concentration analytique en Fe ³⁺ dans le tube $c(\text{Fe}^{3+})$ en μM	16	32	64	96		
Code du colorimètre						

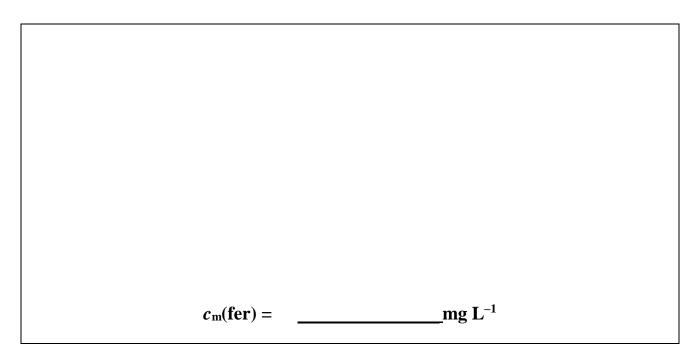
Questions

1. <u>Porter en graphique</u> l'absorbance A des tubes 1 à 4 en fonction de la concentration analytique en Fe³⁺ de chaque tube.

• Dans le tableau suivant, <u>marquer d'une croix</u> les cases correspondant aux données que vous utilisez pour tracer votre droite d'étalonnage.

Tube n° 1 2 3 4

Valeurs utilisées pour la droite d'étalonnage.


2. A l'aide du graphique ci-dessus et des données choisies, <u>tracer</u> la droite d'étalonnage sur le graphique et <u>déterminer</u> la concentration analytique (en μ mol L⁻¹) en Fe³⁺ dans le tube **5**.

$c(\mathrm{Fe^{3+}})_{\mathrm{TUBE}} = $	μmol L	-1

BEL_3

Si vous n'avez pas pu calculer $c(Fe^{3+})$, utilisez la valeur $c(Fe^{3+}) = 50 \,\mu\text{mol}\,L^{-1}$ pour la suite du problème.

3.	Calculer la	concentration	massique,	en mg par	litre,	de fer	dans	le vin.
----	-------------	---------------	-----------	-----------	--------	--------	------	---------

II. Détermination de la stœchiométrie du complexe

Lors de cette partie, vous devrez utiliser la solution 0,00200 M en fer(III) et la solution 0,00200 M en thiocyanate de potassium.

Mode opératoire

Dans la partie I du problème, vous avez employé la couleur du complexe fer(III)—thiocyanate pour déterminer la teneur en fer dans l'échantillon de vin. Lors de cette partie II du problème, vous allez étudier la stœchiométrie du complexe $[Fe_a(SCN)_b]^{(3a-b)+}$ (les molécules d'eau de coordination ne sont pas montrées), où a et b sont des nombres entiers plus petits ou égaux à 3.

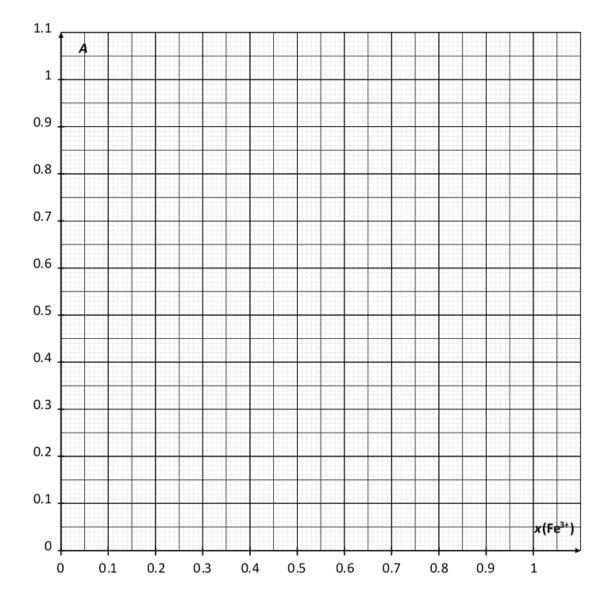
Les solutions aqueuses suivantes vous sont fournies lors de cette partie :

- Solution 0,00200 M en fer(III) (en milieu acide) (80 mL)
- Solution 0,00200 M en thiocyanate de potassium (80 mL)

Vous avez aussi à disposition des tubes à essai (avec des bouchons que vous pouvez laver et sécher), des pipettes graduées, une cuvette spectrophotométrique, un colorimètre (sur demande) et tout autre équipement sur votre paillasse que vous jugez utile.

1. <u>Compléter</u> les trois premières lignes du tableau suivant avec les valeurs de volume qui vous permettront de déterminer la stœchiométrie du complexe, par mesures spectrophotométriques. *Vous n'avez pas besoin de remplir toutes les colonnes*. <u>Calculer</u> la fraction molaire en fer(III) dans chaque tube, en utilisant la formule suivante.

$$x(Fe^{3+}) = \frac{V_{Fe(III)}}{V_{Fe(III)} + V_{SCN}}$$


Tube n°	7	8	9	10	11	12	13	14	15
Volume de solution 0,00200 M en fer(III) V _{Fe(III)} / mL									
Volume de solution 0,00200 M en thiocyanate de potassium V_{SCN-} / mL									
Fraction molaire en fer(III) $x(\text{Fe}^{3+})$									
Absorbance (à 470 nm)									
Code du colorimètre									

- 2. <u>Préparer</u> les tubes. Lorsque tous les tubes sont prêts, <u>lever</u> votre carte « HELP » pour obtenir un colorimètre.
- 3. <u>Préparer</u> le colorimètre selon la procédure décrite précédemment (voir page 18). <u>Sélectionner</u> 470 nm pour la longueur d'onde. <u>Utiliser</u> de l'eau désionisée pour le blanc.

4. <u>Noter</u> l'absorbance de chaque tube à cette longueur d'onde. <u>Écrire</u> les résultats dans le tableau précédent.

Questions

4. <u>Porter en graphique</u> l'absorbance *A* des tubes en fonction de la fraction molaire de fer(III) $x(\text{Fe}^{3+})$.

5. Sur base des résultats des expériences que vous avez menées, déterminer la stœchiométrie du complexe $[(Fe)_a(SCN)_b]^{(3a-b)+}$.

a = ______

BEL 3

	Question	Titrage I	Titrage II	Titrage III	P3.1	P3.2	P3.3	P3.4	P3.5	Total
P3 13% du	Points	10	10	8	4	4	2	2	2	42
total	Score									

Problème P3. Vin de garde

Le dioxyde de soufre, SO_2 , est utilisé comme conservateur dans le vin. Il peut réagir avec l'eau pour donner des ions bisulfite, HSO_3^- , et des protons H^+ . Les ions bisulfite peuvent également former des ions sulfite SO_3^{2-} , par perte du second proton.

$$SO_2 + H_2O \rightleftharpoons H^+ + HSO_3^-$$

 $HSO_3^- \rightleftharpoons H^+ + SO_3^{2-}$

Ces trois formes différentes du dioxyde de soufre dans l'eau peuvent réagir avec les espèces présentes dans le vin telles que l'acétaldéhyde, les pigments, les sucres, etc. formant des produits P. La concentration totale en dioxyde de soufre est la somme des concentrations des formes « libres » $(SO_2, HSO_3^-, SO_3^{2-})$ et des produits P.

La concentration totale en conservateur est réglementée car les sulfites et le dioxyde de soufre peuvent être nocifs pour certaines personnes. Dans l'Union Européenne, la concentration totale maximale en dioxyde de soufre est fixée à 100 mg L⁻¹ pour le vin rouge et 150 mg L⁻¹ pour le vin blanc ou rosé.

Vous devez déterminer par titrage iodométrique la concentration totale en dioxyde de soufre dans l'échantillon de vin blanc fourni.

Mode opératoire

I. Étalonnage de la solution de thiosulfate de sodium

- 1. Vous disposez d'un échantillon d'environ 100 mg d'iodate de potassium pur. La masse exacte est inscrite sur l'étiquette du flacon. **Ecrire** la masse exacte dans le tableau suivant.
- 2. <u>Préparer</u> de manière quantitative 100 mL d'une solution d'iodate de potassium dans le ballon jaugé de 100 mL avec la totalité de l'échantillon d'iodate de potassium et de l'eau distillée. Cette solution est appelée **S**.
- 3. Dans un Erlenmeyer de 100 mL, **ajouter** :
- 20 mL de la solution S à l'aide d'une pipette jaugée ;
- 5 mL de la solution d'iodure de potassium (0,5 M) à l'aide du pied gradué de 5 mL;
- 10 mL de la solution d'acide sulfurique (2,5 M) à l'aide du pied gradué de 10 mL.
- 4. <u>Agiter</u> l'Erlenmeyer, le <u>couvrir</u> avec du Parafilm et le <u>conserver</u> dans l'armoire fermée pendant au moins cinq minutes.
- 5. Remplir la burette avec la solution fournie de thiosulfate de sodium en utilisant un berlin. Titrer le contenu de l'Erlenmeyer en agitant constamment. Lorsque la solution devient jaune paille, ajouter dix gouttes d'empois d'amidon et poursuivre le titrage. Le terme est atteint lorsque la solution est incolore. Noter le volume au terme du titrage V_I .
- 6. **Répéter** le titrage (étapes 3 à 5) autant de fois que nécessaire.

Masse d'iodate de potassium	
(noter la valeur de l'étiquette)	

Titrage n°	V_1 / mL
1	
2	
3	
Valeur retenue V ₁ / mL	

II. Étalonnage de la solution d'iode

- 1. A l'aide d'une pipette jaugée, <u>introduire</u> 25 mL de la solution d'iode étiquetée **I**₂ dans un Erlenmeyer de 100 mL.
- 2. <u>Titrer</u> le contenu de l'Erlenmeyer à l'aide de la solution de thiosulfate. Lorsque la solution devient jaune paille, <u>ajouter</u> dix gouttes d'empois d'amidon et <u>poursuivre</u> le titrage. Le terme est atteint lorsque la solution est incolore. <u>Noter</u> le volume au terme du titrage V_2 .
- 3. **Répéter** le titrage (étapes 1 à 2) autant de fois que nécessaire.

Titrage n°	V_2 / ${ m mL}$
1	
2	
3	
Valeur retenue V ₂ / mL	

III. Dosage du dioxyde de soufre total

- 1. A l'aide d'une pipette jaugée, <u>introduire</u> 50 mL de vin dans un Erlenmeyer de 250 mL.
- 2. <u>Ajouter</u> 12 mL de la solution d'hydroxyde de sodium (1 M), à l'aide d'un pied gradué de 25 mL. <u>Couvrir</u> l'Erlenmeyer avec du Parafilm, <u>agiter</u> le contenu puis laisser le reposer pendant au moins 20 minutes.
- 3. <u>Ajouter</u> 5 mL de la solution d'acide sulfurique (2,5 M) et environ 2 mL d'empois d'amidon à l'aide d'une pipette en plastique jetable.
- 4. A l'aide de la solution d'iode dans la burette, <u>titrer</u> le contenu de l'Erlenmeyer. Le terme du titrage est atteint lorsqu'une couleur foncée apparait et persiste pendant au moins 15 secondes. <u>Noter</u> le volume au terme du titrage *V*₃.
- 5. **Répéter** le titrage (étapes 1 à 4) autant de fois que nécessaire.

Titrage n°	V_3 / mL
1	
2	
3	
Valeur retenue V ₃ / mL	

a		_	-+	:-	'n	_
u	u	e	ST	IC	าท	15

1. <u>Écrire</u> les équations pondérées de toutes les réactions qui se produisent lors de l'étalonnage de la solution de thiosulfate de sodium.
2. <u>Calculer</u> la concentration molaire de la solution de thiosulfate de sodium. La masse molaire de l'iodate de potassium est $M(KIO_3) = 214,0 \text{ g mol}^{-1}$.
$c(S_2O_3^{2-}) = \underline{\text{mol } L^{-1}}$ Si vous n'avez pas pu calculer $c(S_2O_3^{2-})$, utilisez la valeur $c(S_2O_3^{2-}) = 0,0500 \text{ mol } L^{-1}$ pour la suite du problème.
3. <u>Calculer</u> la concentration molaire de la solution d'iode.

BEL_3

$c(\mathbf{I}_2) = \underline{\qquad \qquad \qquad mol \ \mathbf{L}^{-1}}$ vous n'avez pas pu calculer $c(I_2)$, utilisez la valeur $c(I_2) = 0,00700$ mol L^{-1} pour la suite du blème.
Ecrire l'équation de la réaction entre l'iode I_2 et le dioxyde de soufre SO_2 , sachant que le dioxyde de soufre est oxydé en ions sulfate SO_4^{2-} .
<u>Calculer</u> la concentration massique, en mg par litre, du dioxyde de soufre total dans le vin. La masse molaire du dioxyde de soufre est $M(SO_2) = 64,1 \text{ g mol}^{-1}$.
$c_{\mathrm{m}}(\mathrm{SO}_2) = \underline{\qquad} \mathrm{mg} \ \mathrm{L}^{-1}$

BEL_3

PENALTIES

Incident #	Student signature	Lab supervisor signature
1 (no penalty)		
2		
3		
4		
5		