理论试卷

 $\lfloor \mathbf{I}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}}_{\perp} \mathbf{h}^{\mathsf{T}} \mathbf{O} \rfloor$

51st — International Chemistry Olympiad France — Paris — 2019

第51届国际化学奥林匹亚 法国 巴黎 2019

一起做科学!

2019-07-26

MINISTÈRE DE L'ÉDUCATION NATIONALE ET DE LA JEUNESSE

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE ET DE L'INNOVATION

总则

- 本理论考卷共58页。
- "Start (开始)"命令发出后,即可开始答题。
- 考试时间共5小时。
- 所有结果和答案**必须用笔清楚地书写在考卷指定的相应答题框中**。写在答题框外的 答案不予评判。
- 若需打草稿,可以利用试卷的背面。但谨记:写在指定区域之外的解答不予评判。
- 只能使用提供的笔和计算器。
- 为准确理解题意,可向监考人员要求提供英文原版试卷。
- 若需要离开考场 (去洗手间或者饮水、吃零食),请挥动相应的 IChO 卡,监考人员将会跟着你。
- 对于多选的题目:如果你需要改变答案,将原方框全部涂黑,在原框旁边重新画一个方框并做选择。
- 在 "Stop (停止)"命令发出前 30 分钟, 监考人员将给出提醒。
- 当 "Stop (停止)"命令发出后,必须立即停止工作。若不终止书写,超过半分钟(含)将导致你的理论考试无效。
- 发出"Stop (停止)"命令后,将考卷放回考试信封中,然后在座位上等候。监考人员 将封口并收走装有考卷的信封。

GOOD LUCK!

目录

本理论考试共有如下9道独立的题目。各题所占权重标在括号中。

第1题T1: 势阱和丁二烯	(6%)	p. 8
第 2 题 T2: 分解水制氢	(7%)	p. 13
第 3 题 T3: 氯化银的故事	(5%)	p. 19
第 4 题 T4: 从火药到碘的发现	(7%)	p. 24
第 5 题 T5: 用于构建纳米机器的偶氮苯-β-环糊精配合物	(8%)	p. 29
第 6 题 T6: 嵌段共聚物的合成与表征	(8%)	p. 37
第 7 题 T7: [2]索烃的环内运动	(6%)	p. 46
第 8 题 T8: 肌醇的合成与鉴定	(6%)	p. 50
第 9 题 T9: 左旋布比卡因的合成	(7%)	p. 55

物理常数和公式

在此考试中,假设所有物种溶液的活度均可近似为其以 mol L-1 为单位的摩尔浓度值, 为进 一步简化公式和表达式,省略了标准浓度 $c^{\circ} = 1 \text{ mol } L^{-1}$ 。

Avogadro's constant (阿佛加德罗常数):

Universal gas constant (普适气体常数):

Standard pressure (标准压力):

atmospheric pressure (大气压):

Zero of the Celsius scale (摄氏零度):

Faraday constant (法拉第常数):

Watt (瓦特):

Kilowatt hour (千瓦时或度):

Planck's constant (普朗克常数):

Speed of light in vacuum (真空光速):

Elementary charge (基本电荷):

Electrical power (电功率):

Power efficiency (功效):

Planck-Einstein relation (普朗克-爱因斯坦公式):

Ideal gas equation (理想气体方程):

Gibbs free energy (吉布斯自由能):

Reaction quotient Q for a reaction

(如下反应的反应商<math>Q)

a A(aq) + b B(aq) = c C(aq) + d D(aq):

Henderson-Hasselbalch equation

(亨德森-哈塞尔巴赫方程):

Nernst-Peterson equation(能斯特-彼得森方程):

其中,Q 为还原半反应的反应商

Lambert-Beer law (比尔-朗伯定律):

Rate laws in integrated form (速率的积分表达式):

Zero order (零级反应):

First order (一级反应):

Second order (二级反应):

Half-life for a first order process

(一级反应的半衰期):

Number average molar mass M_n (数均摩尔质量):

Mass average molar mass $M_{\rm w}$ (质均摩尔质量):

Polydispersity index I_p(分散指数):

 $N_{\rm A} = 6.022 \cdot 10^{23} \, \text{mol}^{-1}$

 $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $p^{\circ} = 1 \text{ bar} = 10^{5} \text{ Pa}$

 $P_{\text{atm}} = 1 \text{ atm} = 1.013 \text{ bar} = 1.013 \cdot 10^5 \text{ Pa}$

273.15 K

 $F = 9.6485 \cdot 10^4 \,\mathrm{C \ mol^{-1}}$

 $1 \text{ W} = 1 \text{ J s}^{-1}$

 $1 \text{ kWh} = 3.6 \cdot 10^6 \text{ J}$

 $h = 6.626 \cdot 10^{-34} \text{ J s}$

 $c = 2.998 \cdot 10^8 \,\mathrm{m \ s^{-1}}$

 $e = 1.6022 \cdot 10^{-19} \,\mathrm{C}$

 $P = \Delta E \times I$

 $\eta = P_{\text{obtained}}/P_{\text{applied}}$

 $E = hc/\lambda$

pV = nRT

G = H - TS

 $\Delta_{\rm r}G^{\circ} = -RT \ln K^{\circ}$

 $\Delta_{\rm r}G^{\circ} = -n F E_{\rm cell}^{\circ}$

 $\Delta_{\rm r}G = \Delta_{\rm r}G^{\circ} + RT \ln O$

 $Q = \frac{[\mathbf{C}]^c [\mathbf{D}]^d}{[\mathbf{A}]^a [\mathbf{B}]^b}$

 $pH = pK_a + \log \frac{[A^-]}{[HA]}$

 $E = E^{o} - \frac{RT}{zF} \ln Q$

 $A = \varepsilon lc$

 $[\mathbf{A}] = [\mathbf{A}]_0 - kt$

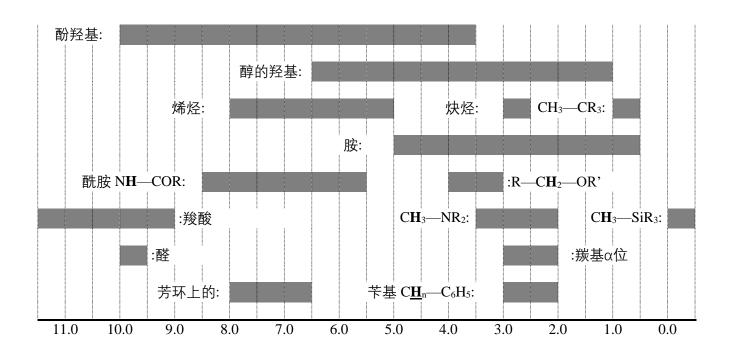
 $\ln[A] = \ln[A]_0 - kt$

 $\frac{1}{[\mathbf{A}]} = \frac{1}{[\mathbf{A}]_0} + kt$

 $t_{1/2} = \ln 2/k$

 $M_{\rm n} = \frac{\sum_{\rm i} N_{\rm i} M_{\rm i}}{\sum_{\rm i} N_{\rm i}}$ $M_{\rm w} = \frac{\sum_{\rm i} N_{\rm i} M_{\rm i}^2}{\sum_{\rm i} N_{\rm I} M_{\rm i}}$

 $I_{\rm p} = \frac{M_{\rm w}}{M}$


元素周期表

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3 Li 6.94	4 Be _{9.01}											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	²⁶ Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	43 Tc	44 Ru 101.1	45 Rh	46 Pd 106.4	47 Ag	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb	52 Te	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57-71	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 r 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po	85 At	Rn
87 Fr	Ra -	89- 103	104 Rf	105 Db	Sg	107 Bh -	108 Hs -	109 Mt -	110 Ds	Rg	112 Cn	113 Nh -	114 FI -	115 Mc	116 Lv -	117 Ts	Og

57	7	58	59	60	61	62	63	64	65	66	67	68	69	70	71
L	a (Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138	3.9 1	40.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	9	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Α	c ¯	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
-	2	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

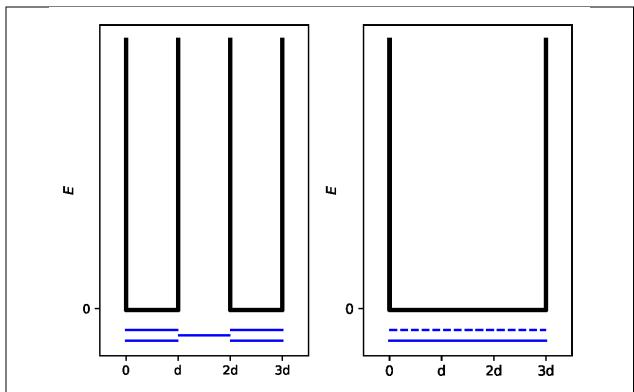
¹H NMR 与所示官能团连接的氢的化学位移 (ppm / TMS)

H-H 耦合常数 (Hz)

氢的种类	$ J_{ab} $ (Hz)
$R_2CH_aH_b$	4-20
$R_2\mathbf{H_a}C$ — $CR_2\mathbf{H_b}$	2-12 如果σ键可以转移转动: 6-8 直立键-直立键 (环己烷中): 8-12 直立键-平伏键 或 直立键-直立键 (环己烷): 2-5
$R_2\mathbf{H_a}C$ — CR_2 — $CR_2\mathbf{H_b}$	如果σ键可以转移转动: < 0.1 其他 (刚性): 1-8
RH _a C=CRH _b	顺式: 7-12 反式: 12-18
$R_2C=C\mathbf{H_aH_b}$	0.5-3
$\mathbf{H_a}(\mathrm{CO})$ — $\mathrm{CR}_2\mathbf{H_b}$	1-3
RH _a C=CR—CR ₂ H _b	0.5-2.5

红外 IR 图谱表

振动模式	σ (cm ⁻¹)	峰的强度
醇 O—H (拉伸 stretching)	3600-3200	强
羧酸 O—H (拉伸 stretching)	3600-2500	强
N—H (拉伸)	3500-3350	强
≡C—H (拉伸 stretching)	3300	强
=C—H (拉伸 stretching)	3100-3000	弱
C—H (拉伸 stretching)	2950-2840	弱
-(CO)—H (拉伸 stretching)	2900-2800	弱
C≡N (拉伸 stretching)	2250	强
C≡C (拉伸 stretching)	2260-2100	易变
醛 C=O (拉伸 stretching)	1740-1720	强
酸酐 C=O (拉伸 stretching)	1840-1800; 1780-1740	弱; 强
酯 C=O (拉伸 stretching)	1750-1720	强
酮 C=O (拉伸 stretching)	1745-1715	强
酰胺 C=O (拉伸 stretching)	1700-1500	强
烯烃 C=C (拉伸 stretching)	1680-1600	弱
芳环中的 C=C (拉伸 stretching)	1600-1400	弱
CH ₂ (弯折 bending)	1480-1440	中等
CH ₃ (弯折 bending)	1465-1440; 1390-1365	中等
C—O—C (拉伸 stretching)	1250-1050	强
C—OH (拉伸 stretching)	1200-1020	强
NO ₂ (拉伸 stretching)	1600-1500; 1400-1300	强


∆ ∆∆ 1 ⊞6	Question 问题	1	2	3	4	5	6	7	8	9	10	11	Total 总分
第1题 T1 6%	Points 分数	3	4	4	2	3	2	2	4.5	2.5	3	3	33
0%	Score 得分												

第1题 T1: 势阱与丁二烯

1,3-丁二烯分子常写作 $CH_2=CH-CH=CH_2$,显示有单双键交替。但是,其化学反应性与此描述并不相符,更合适的表示方式是将 π 电子分布在三个键上:

这一体系可以用一维箱 (也就是势阱) 中的自由电子模型处理。在长度为 L 的一维势阱中,一个电子的能量可以用如下公式确定: $E_n=\frac{n^2h^2}{8m_eL^2}$,其中,n 为正整数。

1. 研究两种不同的模型。对<u>每一种模型</u>,在其对应的图中<u>画出</u>至少三个最低能级 E_n ,示出能级相对高低 (图内和图间均有可比性)。

模型 1 ("定域"): π 电子定域在两头的双键上,形 模型 2 ("离域"): π 电子离域在整个分子中,形成两个分立的长度为d的势阱。 成单一的长度为3d的势阱。

2. 将 π 电子<u>排布</u>在上述示意图之模型 1 的轨道中,<u>写出</u>模型 1 中 π 电子体系总能量的表达式,含 参数 h、m_e 和 d。

<i>E</i> (1) =			

3. 将 π 电子排布在上述示意图之模型 2 的轨道中,写出模型 2 中 π 电子体系总能量的表达式,含 参数h、 m_e 和d。

$$E(2) =$$

共振能等于实际 π 体系的总能量减去乙烯分子(具有相同数目的电子)能量之和的差值。

4. **写出**丁二烯共振能 ΔE 。的表达式,含参数 h、me 和 d。

$$\Delta E_{
m c} =$$

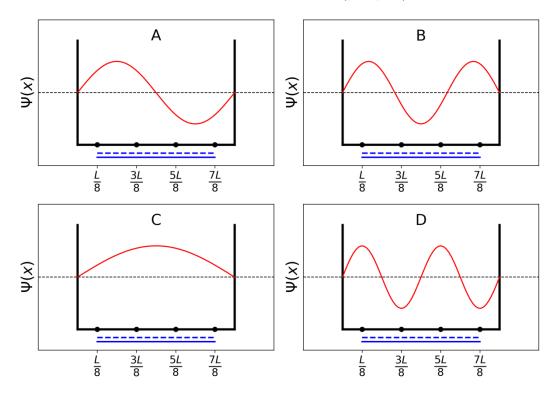
模型1和2都过于简单。下面给出一个更细致的新模型。

5. 采用 Lewis 式,参照第一个框中的化学式,画出丁二烯的另外三种共振式。

011		
H ₂ C CH ₂		
H°C,		
1120		

考虑到碳原子有一定的大小,模型2可以修正为模型3,处理如下:

- 一新的势阱长度为L,对应于横轴在0到L之间;
- 碳原子分别处于横坐标的 L/8、3L/8、5L/8 以及 7L/8 处。


对每一能级 n, π电子波函数为:

$$\psi_{\mathrm{n}}(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

密度为:
$$\rho(x) = 2\sum_{i=1}^{N/2} |\psi_{i}(x)|^{2}$$

对于含有N个 π 电子的体系, π 电子密度为:

$$\rho(x) = 2 \sum_{i=1}^{N/2} |\psi_i(x)|^2$$

与 π 体系的分子轨道相对应,四个 π 波函数示意图如下(次序任意)。

6. 排出 4 个 π 轨道的能量次序(E_A , E_B , E_C 和 E_D)。

< < <

7. <u>写出</u>丁二烯中电子占据轨道所对应的符号(A, B, C 或 D)。

8. 采用模型 3,对于已占能级 n=1 和 n=2,**算出**在位置 0,L/4 和 L/2 处, π 波函数含参数 L 的表

达式。 $\psi_1(0) =$

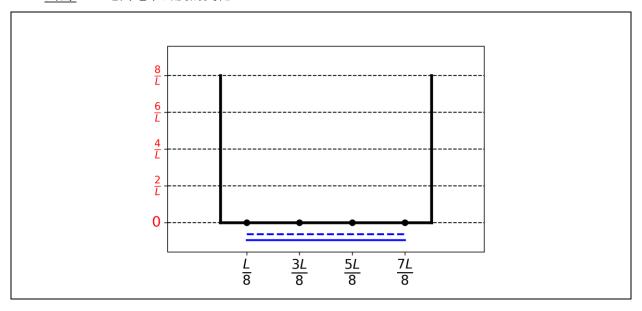
$$\psi_1\left(\frac{L}{4}\right) =$$

$$\psi_1\left(\frac{L}{2}\right) =$$

 $\psi_2(0) =$

 $\psi_2\left(\frac{L}{4}\right) =$

 $\psi_2\left(\frac{L}{2}\right) =$


9. 采用模型 3, <u>算出</u>在位置 0, L/4 和 L/2 处, π 电子的密度。

 $\rho(0) =$

 $\rho\left(\frac{L}{4}\right) =$

 $\rho\left(\frac{L}{2}\right) =$

10. <u>画出</u>0~L之间电子密度的变化。

11. <u>排出</u>如下 CC 键 (B1、B2、...、B5) 键长的次序,采用 = 或者 <,按照升序排列:

B1: 丁二烯分子中 C1C2 之间的键 B2: 丁二烯分子中 C2C3 之间的键 B3: 丁二烯分子中 C3C4 之间的键

 B4:
 乙烷分子中的 CC 键

 B5:
 乙烯分子中的 CC 键

笠っ 晒	Question 问题	1	2	3	4	5	6	7	8	9	10	Total 总分
第 2 题 T2 7%	Points 分数	1	4	2	3	3	6	4	1	8	2	34
	Score 得分											

第2题T2:分解水制氢

数据:

物质	H ₂ (g)	H ₂ O(l)	H ₂ O(g)	O ₂ (g)
$\Delta_{\rm f}H^{\circ} ({\rm kJ~mol^{-1}})$	0	-285.8	-241.8	0
$S_{\mathrm{m}}^{\circ} (\mathrm{J} \; \mathrm{mol}^{-1} \mathrm{K}^{-1})$	130.6	69.9	188.7	205.2

氢气(H₂)可用作排放二氧化碳的燃料的替代品。因此,降低其生产成本和环境影响是一个重大挑战。在这一领域,分解水制氢是一种有前景的可选技术。

1.	<u>写出</u> 液态水分解反应的方	程式并配平,要求水	的计量系数为1。
2.	仅采用所给热力学数据,	通过计算数据判断,	298 K 时该反应在热力学上能否自发进行?
计	算:		
反	应在热力学上能否自发进行	疗?	
		□ Yes 是	□ No 否

分解水通过电化学过程进行,在装有酸性水溶液的电解池中,插入两个电极,电极连接外电源,两个电极上均有气泡产生,如图1所示。

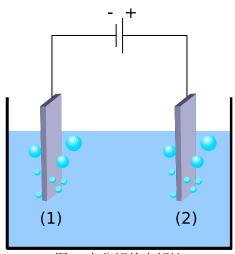
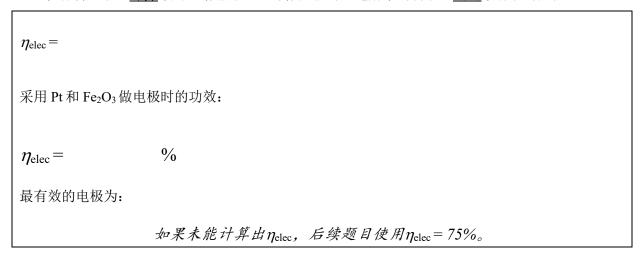


图 1. 水分解的电解池

3. 写出各电极上发生的电化学半反应方程式并配平。

电极 (1):			
电极 (2):			

4. 仅采用所给热力学数据(或小题 2 的结果),<u>计算</u> 298 K下,加在两电极之间的实际电压($\Delta E_{applied}$) 和要使反应在热力学上可行所需分解电压 ΔE_{th} (待定)的关系,设反应物和产物都处于标准态。 **勾选**正确的条件,结果中小数点后**保留** 3 位数字。


	The state of the s
计算	章:
', '	
	$\Delta E_{ m applied} = \Delta E_{ m th}$
	$\Delta E_{\text{applied}} > \Delta E_{\text{th}}$
	$\Delta E_{ m applied} < \Delta E_{ m th}$
	如果未能计算出ΔEth, 后续题目可以使用1.200 V。

实验中,需要施加更高的电压才能实现水的分解。若采用 Pt 做阴极,分解水所需的最小电压 ΔE_{min} 取决于阳极的性质,下表列出几种阳极材料:

阳极	ΔE_{\min} (V)
IrO_x	1.6
NiO_x	1.7
CoO_x	1.7
Fe_2O_3	1.9

 ΔE_{\min} 和 ΔE_{th} 的差值源于电解池的损耗。

5. **写出**含参数 ΔE_{th} 和 ΔE_{min} 的电解池功效 η_{elec} 的函数表达式 (即水分解中功率的比值)。假设电流值保持一致,<u>计算</u>采用 Pt 做阴极 Fe₂O₃ 做阳极时,电解水的功效。<u>选出</u>最有效的阳极。

另一种替代方法是直接光催化分解水,该过程用到可以吸收光而被激活的半导体材料。

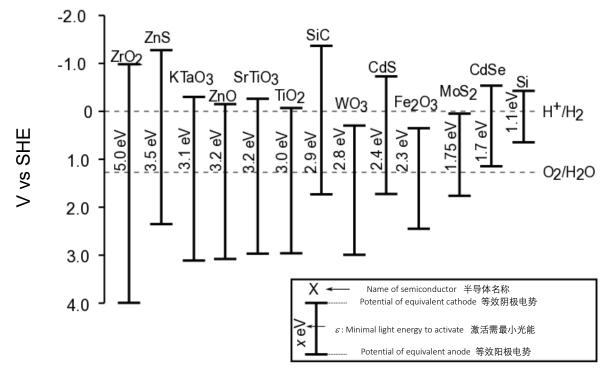


图 2. 不同半导体的激活条件及等效电极电势。 虚线分别对应水的氧化和还原电势。SHE = 标准氢电极

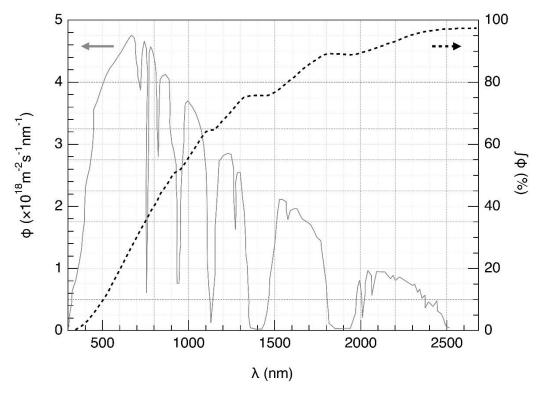


图 3. 左轴:太阳光子通量 Ø 的光谱分布。光子通量是指单位时间到达半导体单位面积上的光子数。 右轴和虚线:累积光子通量(即包含波长较短的光子通量的分数)。

6. **估算**可以激活半导体 TiO₂、CdS、Si 的太阳光子通量分数。明确示出用于计算的公式和单位。

解释/计算:	

	分数近似值	
TiO ₂		%
CdS		%
Si		%

半导体的激活导	异致表面电位的改变,因此	它可以看作是有不同电位的	两个电极。
7. 采用图 2 的数	数据,在下表中 <u>选出</u> 哪些半	兰导体激活后同时可用作阳极	和阴极而促使水分解的材料。
\square ZrO ₂ \square CdS	□ ZnO □ Fe ₂ O ₃	□ TiO ₂ □ CdSe	□ WO ₃ □ Si
8. 选出 可同时用	月作阳极和阴极,并在给定	太阳光照射下分解水效率最	高的半导体。
究工作。当光入身 0.37 cm ³ 的氢气。	寸功率 <i>P</i> = 1.0 kW m ⁻² ,光		3 光照射下析出 H_2 和 O_2 的研 \overline{D} 应 1 小时后可以收集到 $V=$
9. 计算 光转化均	刀奴 η direct。		
计算:			
$\eta_{ m direct}$ $=$	%		
	如果未算出计算η _{direct} ,	在后续题目中使用η _{direct}	= 10%.

可以对两种太阳能转化制氢的模式进行比较:一种是直接光催化分解,一种是将光伏板和电解槽相组合的间接光电解。市售光伏板的功率约为 $\eta_{\mathrm{panels}}=20\%$ 。

10. <u>比较</u>两种模式的功效, η_{direct} 和 η_{indirect} ,设用 Fe_2O_3 和 Pt 做电极进行电解。

计算:		
	_	_
\square $\eta_{ ext{direct}} > \eta_{ ext{indirect}}$	$\ \ \square \ \eta_{ m direct} pprox \ \eta_{ m indirect}$	\square $\eta_{ ext{direct}} < \eta_{ ext{indirect}}$

松 2 FF	Question 问题	1	2	3	4	5	6	7	8	9	10	11	12	Total 总分
第3题 T3 5%	Points 分数	1	3	3	3	4	2	7	2	2	3	4	6	40
5%	Score 得分													

第3题T3: 氯化银的故事

在298 K时,有关数据:

 $pK_{s1}(AgCl) = 9.7; pK_{s2}(Ag_2CrO_4) = 12$ 配合物 $[Ag(NH_3)_n]^+$ 的形成常数: $\beta_n = 10^{7.2}$

相对于标准氢电极的电势:

Ag+/Ag(s): E°(Ag+/Ag(s)) 标准电极电势: 0.80 V

 $O_2(aq)/HO^-(aq)$ (海水)的条件电势: $E'(O_2(aq)/HO^-(aq)) = 0.75 \text{ V}$

Part A: 引用自盖-吕萨克 (Louis-Joseph Gay-Lussac) 的化学课

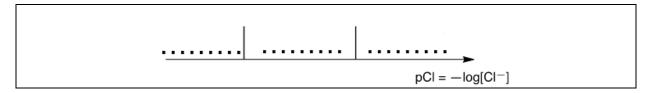
Louis-Joseph Gay-Lussac (1778-1850), 法国化学家和物理学家,下面关于氯化银某些性质的叙述引自其化学课。

引述 A: "我来说说氯化银,一种乳白色的固体。将盐酸加入硝酸银水溶液即可得到它。"

引述 B: "由于它不溶于水,这种盐没有味道。"

引述 C: "这种化合物完全不溶于乙醇甚至酸,却可溶解于浓盐酸。"

引述 D: "另一方面, 氯化银在氨水中高度可溶。"


1. 引述 A: 写出合成 AgCl(s)的化学方程式并配平。

引述 E: "然后,通过加入酸,其与氨水反应后,我们可以让氯化银重新出现。"

引述 F: "如果你用一个银碗蒸发咸海水,得到的氯化钠不纯,掺有一种乳白色固体。"

2.	引述 B:	<u>计算</u> 298 K 时,	AgCl(s)在水中的溶	解度 (单位:	$mol \; L^{-1})_{\circ}$		
计算	年 :						
					s =	mol L ⁻¹	

3. **引述 C**: 在高浓度氯离子溶液中,可以生成化学计量比确定为 1:2 的配合物。在下面数轴上(从 左向右 pCl值增加)的每个区域,定性<u>写入</u>各区域银物种的主要存在形式(含固体)。交界处的 pCl 值不用考虑。

引述 D: 当把氨水加入到 AgCl 中时,生成了一种化学计量比确定为 n 的配合物。

4. <u>写出</u>从 AgCl 合成配合物 $[Ag(NH_3)_n]^+$ 的方程式并配平,<u>计算</u>对应的平衡常数。

方程式:	
计算 :	
	K =
	如果你没能算出K值,后面处理中可使用 $K=10^{-3}$ 。

5. 向含有 0.1 mol AgCl 的 1 L 水中加入氨水,当最后的固体颗粒恰好消失时, $[NH_3] = 1.78 \text{ mol L}^{-1}$ 。 **计算**配合物的化学计量比 (忽略稀释效应)。

计算:		
	n =	

6. <u>写出</u>引述 E中的化学方程式并配平。

在 引述 F 中提到的乳白色固体的化学方程式并配平 (<u>氧气的化学计量数取为 1</u>), <u>计算</u> 该反 298 K 的平衡常数。	应在
方程式:	
计算:	
K =	
Part B: 莫尔(Mohr)法	
莫尔(Mohr)法是在铬酸钾 $(2K^+, CrO_4^{2^-})$ 存在下,用 Ag^+ 作为滴定剂对 Cl^- 进行的显色滴定。向 $V_0=20.00$ mL 的未知浓度氯化钠 C_{Cl} 溶液中,加入三滴 (约 0.5 mL) 浓度约为 7.76×10^{-3} mol 10 K $_2$ CrO $_4$ 溶液。采用 $C_{Ag}=0.050$ mol L^{-1} 的硝酸银溶液 (Ag^+, NO_3^-) 滴定上述氯化钠溶液,即可固体 A ,当 $V_{Ag}=4.30$ mL 时溶液中出现红色沉淀 (固体 B)。	L-1 的
8. <u>写出</u> 实验中发生的两个化学反应方程式并配平。 <u>计算</u> 其分别对应的平衡常数。	
<i>K</i> ° ₁ =	
IX 1	
$K^{\circ}{}_{2}=$	

7. 假设海水为弱碱性且富含氧气,在此条件下银金属可以还原氧气分子。<u>写出</u>在此条件下生成的

	9.	判断 两种固体。	
		固体 A :	
		国体 B :	
	10.	计算 氯化钠溶液中未知氯离子的分析浓度 C_{Cl} 。	
	计算	:	
		$C_{ m Cl}$ = mol	L^{-1}
		如果你未能计算出 C_{Cl} ,后面的问题中可以使用 $C_{Cl}=0.010$ $mol\ L^{-1}$ 。	
	11.	计算 $AgCl(s)$ 沉淀开始生成时所需的最少体积 $V_{Ag}(min)$ 。	
_	11. 计算	计算 AgCl(s) 沉淀开始生成时所需的最少体积 V _{Ag} (min)。	
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			

12.	计算当 Ag ₂ CrO ₄ 沉淀刚生	成时,溶剂	夜中剩余的氯离子浓	度[Cl-] _{res。}	通过两个数值的比较,	<u>评价</u>
	为什么 CrO42-是一个很好的	的滴定终点	括示剂 。			

S. 14.		
计算:		
	F 0:1 3	4 - 1
	$[C1^-]_{res} =$	$mol L^{-1}$
	r 3100	
CrO ₄ ²⁻ 是一种很好的滴定终点指示剂,因为	•	
[CIO4	•	
1		

ACA A ETIG	Question 问题	1	2	3	4	5	6	7	8	Total 总分
第 4 题 T4 7%	Points 分数	6	9	8	5	6	2	2	12	50
770	Score 得分									

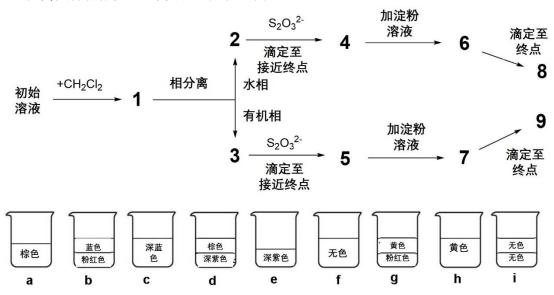
第 4 题 T4: 从火药到碘的发现

19世纪,法国企业家 B. Courtois 专门生产用于制造火药的硝酸盐 A (M_A (NO_3) $_m$)。A 最初从亚洲进口,后来由硝酸盐 B (M_B (NO_3) $_n$) 与藻类中的化合物 C 进行置换反应而制得。

1.	确定 硝酸盐 A 和 B 的化学式。二者是碱金属或碱土金属 $(M_A$ 和 $M_B)$ 的无水硝酸盐,其中一种硝酸盐含有不超过 1 w%的非金属杂质,而另一种则含有 9 ± 3 w%的杂质。样品中金属 M_A 和 M_B 的含量分别为 38.4 w%和 22.4 w%。通过 <u>计算给出</u> 答案。
	A: B:

为了获得 A,将 262.2 g 固体化合物 C 加入含有 442.8 g B (已知 B 过量) 的溶液中,结果生成 190.0 g 白色沉淀 D,过滤除去沉淀 D。蒸干滤液,并加热所得固体混合物 E,直到样品 (仅含亚硝酸盐, NO_2) 质量恒定。仅有的气体产物为氧气,其在 0 C 、1 大气压时体积为 60.48 L (氧气可视为 理想气体)。

2.	<u>计算</u> 混合物 E 的组成 (w%)。]	\mathbf{E} 中只含化合物 \mathbf{A} 和 \mathbf{B} ,	无其他杂质,	其中的 C 为无水纯净物。
	A 的含量 w%:	B的含量	w%:	
3.	A 的含量 w%: 确定 化合物 C 和 D 的化学式,			
3.				
3.				
3.				
3.				
3.				
3.				
3.				
3.				


C :	D:
B 和 C 反应的方程式:	
时,他的猫闯进了实验室,打翻的浓闷中硫酸是氧化剂):碘(I ₂)由此而得以	is 观察到铜容器的损耗速度比平时快。当他正在研究此现象 硫酸溶液溅到干藻灰上,随即从容器中冒出紫色蒸气 (1, 此反 以发现!正是碘引起了铜的腐蚀 (2)。此后,由于碘在医学上 造业:通过藻类与氯反应来生产碘 (3)。
今天,碘主要通过反应体系(NO ₃	-、I-、H+)(4)或(IO ₃ -、I-、H+)(5)来制备。
4. 写出 1-5 的反应方程式并配平。	
1	
2	
3	

碘在水中的溶解度很低,但若加入碘离子,其溶解度将显著增加。它们一起形成三聚离子 I_3 -: $I^-(aq) + I_2(aq) = I_3^-(aq)$ (6)

通过二氯甲烷萃取 I_2 可以研究平衡 **(6)**。实际上, I^- 和 I_3^- 难溶于有机溶剂,但 I_2 易溶。萃取时, I_2 在二氯甲烷中的浓度是水中浓度的 15 倍。

5

进行如下实验:将少量碘晶体溶解于 50~mL 含有 0.1112~g 碘化钾的水溶液中,配得初始溶液。然后,加入 50~mL 二氯甲烷,充分振荡混合溶液直到平衡。分相后,以淀粉为指示剂,用五水合硫代硫酸钠的标准溶液 (1.000~L 溶液中含 14.9080~g)分别滴定,有机相消耗 16.20~mL,水相消耗 8.00~mL 硫代硫酸钠溶液。整个实验流程示于下图:

5. 找出步骤 (1-9) 所得体系与代表它们的示意图(a-i)之间的对应关系。

反应步骤	示意图
1	
2	
3	
4	
5	
6	
7	
8	
9	

6.	写出滴定过程中碘物种和硫代硫酸钠发生反应的两个可能的化学方程式并配平。
----	-------------------------------------

7. 计算配制初始碘溶液所需碘的质量。

	$m(I_2) =$	g
8.	<u>计算</u> 反应 (6) 的平衡常数 <i>K</i> °。	
		<i>K</i> ° =

松	Question 问题	1	2	3	4	5	6	7	8	9	10	11	12	Total 总分
第5题 T5	Points 分数	3	4	4	2	5	5	4	3	5	2	2	2	41
8%	Score 得分													

第 5 题 T5: 用于构建纳米机器的偶氮苯-β-环糊精包合物

纳米机器是一种可将能源转变为纳米运动的分子组装体,可应用于药物传输等领域。多种纳米机器利用了偶氮化合物(R-N=N-R')经光照而发生的异构化反应。

1. <u>画出</u>偶氮苯($H_5C_6-N=N-C_6H_5$)的立体异构体,在距离最远的两个碳原子之间<u>画出</u>一条直线,<u>比</u> <u>较</u>两个距离 (d_{trans} 和 d_{cis}) 的长短。

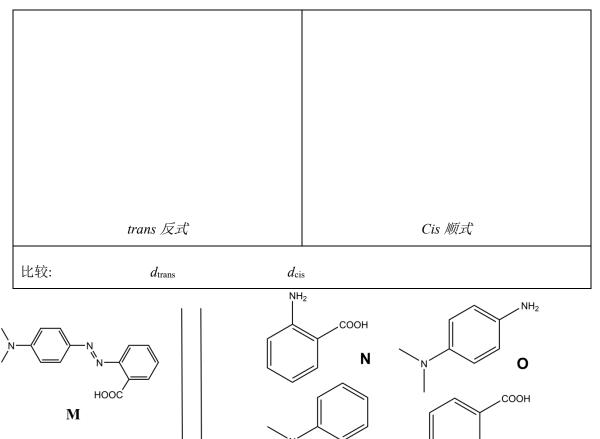


图 1. 合成 M 的可能反应物。

2. **M** 可以通过简单的反应物(图 1)经两步反应合成。从图 1 给出的化合物中(**N** to **Q**),<u>选出</u>可以高度区域选择性制备 **M** 的反应底物。溶于冷盐酸的亚硝酸钠(NaNO₂)用作合成步骤中的第一步反应试剂。

反应试剂:	和

Q

结合常数 Ki 的测定

β-环糊精(\mathbb{C} , 见图 2)是一种葡萄糖的环七聚体,可以与偶氮类化合物形成包合物。在本题的 3-6 小题中,我们将通过光谱法测定如图 2 所示包合物 $\mathbb{C}\mathbf{M}_{trans}$ 的结合常数 K_t 。

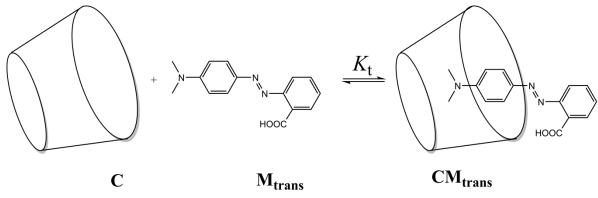


图 2. 包合物 CM_{trans} 的形成。

配制数种 \mathbf{C} 和 $\mathbf{M}_{\text{trans}}$ 比例不同的混合溶液,二者起始浓度分别为[\mathbf{C}]₀ 和[$\mathbf{M}_{\text{trans}}$]₀。所配溶液均具有相同的[$\mathbf{M}_{\text{trans}}$]₀,只是[\mathbf{C}]₀ 有变化。在固定波长下,测定所得各溶液的吸光度与纯 $\mathbf{M}_{\text{trans}}$ 溶液吸光度的差值 ΔA ,将 $\mathbf{C}\mathbf{M}_{\text{trans}}$ 和 $\mathbf{M}_{\text{trans}}$ 的摩尔吸光系数分别写作 $\varepsilon_{\text{CMtrans}}$ 和 $\varepsilon_{\text{Mtrans}}$ 。L 为光源通过样品的光程, β -环糊精 $\mathbf{C}(\varepsilon_{\mathbf{C}})$ 的吸收可忽略。

3. <u>证明</u>: $\Delta A = \alpha \cdot [CM_{trans}]$, <u>写出</u> α 的表达式(含一个或多个已知常数)。

证明:	
	lpha =

4. <u>证明</u>: 当 C 大大过量于 M_{trans} 时(即, $[C]_0 >> [M_{trans}]_0$),C 的浓度可以看作常数,即 $[C] \simeq [C]_0$ 。

证明:	

5.	常数和	当 C 大大 印初始浓度	过量于 M tr)。	_{ans} 时(即,	$[\mathbf{C}]_0 >> [\mathbf{M_t}]$	$[a, \Delta A]$	$=\alpha\cdot\frac{\beta\cdot[\mathbf{C}]_0}{1+K_{t}\cdot[\mathbf{C}]_0};$	写出 β 的表达3	式(含
证明	归:								
							$\beta =$		

6. 利用如下实验曲线(图 3), <u>**计算**</u> *K*_t值。

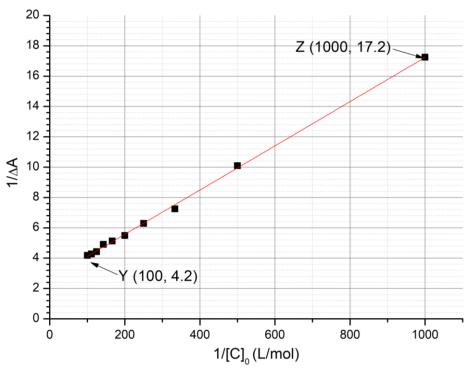


图 3. 1/ΔA 随 1/[C]₀ 的变化关系

计算:	
	$K_{t} =$
	•

结合常数 Kc 的测定

在如下7到9小题中,将通过动力学方法研究 \mathbf{M}_{cis} 及其包合物 \mathbf{CM}_{cis} 的形成,测定结合常数 \mathbf{K}_{c} 。 照射仅含有 \mathbf{M}_{trans} 的样品会生成已知量的 \mathbf{M}_{cis} ,其浓度为[\mathbf{M}_{cis}] $_{0}$ 。 \mathbf{M}_{cis} (游离或存在于包合物内)发生 热异构转化为 \mathbf{M}_{trans} 。 当不存在 \mathbf{C} 时,异构化反应按照一级动力学进行,其速率常数为 \mathbf{k}_{1} 。所有的包合反应平衡都快于异构化反应过程。图 4 为这个实验的动力学反应示意图。

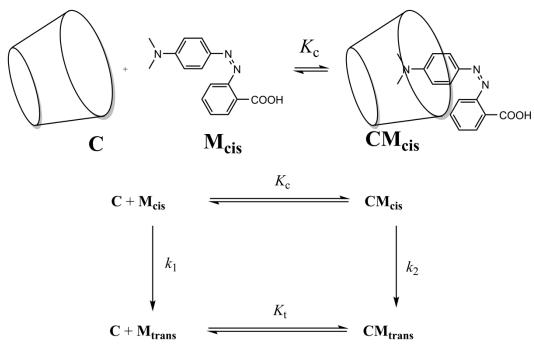


图 4. C存在下 Mcis 异构化反应的动力学机制示意图

总 Mcis(游离和包合物中的)的转化速率定义为:

$$r = k_1[\mathbf{M_{cis}}] + k_2[\mathbf{CM_{cis}}]$$

实验中,r 遵循一级动力学反应规律,其表观速率常数为 k_{obs} : $r = k_{\text{obs}}([\mathbf{M}_{\text{cis}}] + [\mathbf{CM}_{\text{cis}}])$

7. <u>证明</u>: $k_{\text{obs}} = \frac{\gamma + \delta \cdot k_2[\mathbf{C}]}{1 + K_{\mathbf{C}}[\mathbf{C}]}$, <u>写出</u> γ 和 δ 的表达式(含已知常数)。

γ =	$\delta =$	

8. 若[\mathbf{C}]₀>> [\mathbf{M}_{cis}]₀,<u>选择</u>在怎样的条件(单选或多选)下,对应于 k_{obs} 的半衰期 $t_{1/2}$ 可以表达为 $t_{1/2}$ = $\frac{\ln 2}{\gamma}$ (1 + K_c [\mathbf{C}]₀)。 <u>推导证明</u>你的结论。

	环糊精内 $\mathbf{M}_{\mathbf{cis}}$ 的异构反应很慢
	游离 M _{cis} 的异构反应很慢
	CM _{cis} 很稳定
	CM _{trans} 很稳定
证明:	
MT-2/2 ·	
1	

9. 若第 8 小题中的条件均得以满足,对下表中列出的数据进行线性回归,**确定** K_c 值。可使用计算器或采用作图法。

$[\mathbf{C}]_0 \text{ (mol } \mathbf{L}^{-1})$	$t_{1/2}$ (s)	$[\mathbf{C}]_0 \text{ (mol } \mathbf{L}^{-1})$	$t_{1/2}$ (s)
0	3.0	$3.0 \cdot 10^{-3}$	5.9
$1.0 \cdot 10^{-4}$	3.2	$5.0 \cdot 10^{-3}$	7.7
$5.0 \cdot 10^{-4}$	3.6	$7.5 \cdot 10^{-3}$	9.9
$1.0 \cdot 10^{-3}$	4.1	$1.0 \cdot 10^{-2}$	12.6

纳米机器的构建

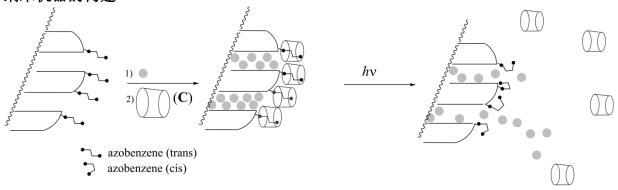


图 5. 通过光激发异构化反应导致偶氮苯-环糊精包合物的解离应用于染料分子(灰色圆点)传输。

将另外一种初始为反式结构的偶氮苯化合物(其 $K_c \ll K_t$)共价连接到硅胶表面(如图 5 所示)。在 硅胶孔内充入一种染料(罗丹明 B,图 5 中的灰色圆点)。通过加入 C 而形成的包合物封住硅胶孔,阻止染料的释放。

10. <u>选择</u>最适合条件(单选),使得在 $\mathbb C$ 存在的条件下,开始可以封住硅胶孔,而在照射条件下可以释放染料。

```
\begin{array}{cccc}
\square & K_t >> 1 \\
\square & K_t >> 1 \stackrel{\coprod}{\coprod} K_c << 1 \\
\square & K_t / K_c << 1 \\
\square & K_t >> 1 \stackrel{\coprod}{\coprod} K_c >> 1 \\
\square & K_c << 1
\end{array}
```

将内含染料的偶氮苯–硅胶粉末放置在比色皿内的一个角落(图 6 所示),这样粉末不会扩散到溶液中。该粉末在波长 λ_1 的照射下可启动染料从硅胶孔中的释放(图 5)。通过吸收光谱测量溶液在波长 λ_2 的吸光度而监测染料的释放。

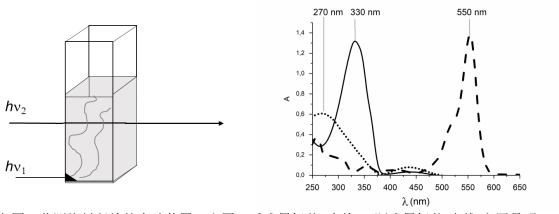


图 6. 左图: 监测染料释放的实验装置;右图:反式偶氮苯(实线),顺式偶氮苯(点线)和罗丹明 B(虚线)的吸收光谱。

11. 确定 λ₁.

$\lambda_1 = nm$

12. 确定 λ2.

$\lambda_2 = nm$	
------------------	--

AAA C BIRG	Question 问题	1	2	3	4	5	6	7	8	9	Total 总分
第 6 题 T6 8%	Points 分数	4	4	5	3	10	2	9	6	5	48
070	Score 得分										

第6题 T6: 嵌段共聚物的表征

由不同聚合物片段(嵌段)连接而成的嵌段共聚物具有独特的性质,例如,自组装能力。此题研究了嵌段共聚物的合成和表征方法。

第一个片段的研究

在第一部分,我们将研究水溶性聚合物 1 (α-甲氧基-ω-氨基聚乙二醇)。聚合物 1 的 1 H NMR 谱图 (DMSO- d_{6} , 60 $^{\circ}$ C, 500 MHz)中 包括以下信号峰:

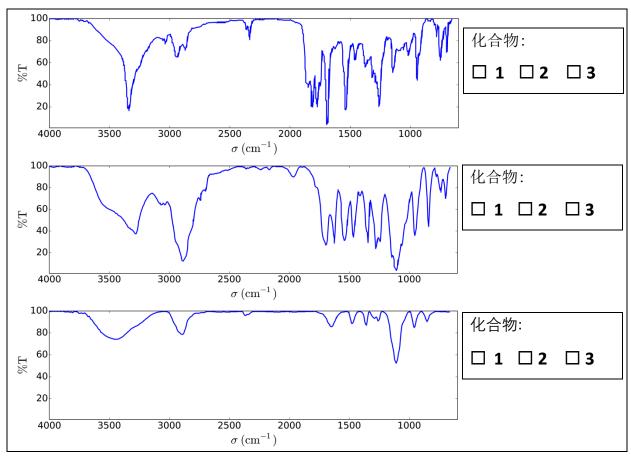
Index	δ (ppm)	积分面积
a	2.7*	0.6
b	3.3	0.9
С	3.4	0.6
d	~ 3.5	133.7

表 1. *加入 D_2O 后, 化学位移 2.7 ppm 的信号峰将会消失。

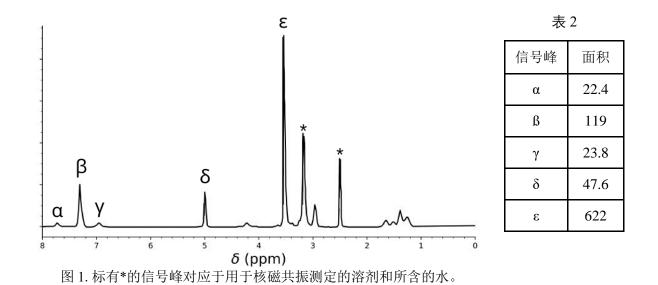
1. 将表 1 中的 1 H NMR 谱图的信号峰(a、b、c、d)<u>填入</u>到与其相对应的框中。

2. 平均聚合度 n 为聚合物重复单元 OC_2H_4 的链节数与末端甲基之比, OC_2H_4 的链节数可以根据其 NMR 信号峰面积 A_{OC2H_4} 与端基 OCH_3 的 NMR 信号峰面积 A_{OCH_3} 比较所得。 <u>计算</u> n。

n = 如果你无法算出n值,就在后续计算中假定n = 100。


双嵌段共聚物的研究

通过 $152(\epsilon-($ 下氧基羰基)-赖氨酸N-酸酐)反应来合成第二个嵌段共聚物,得到了嵌段共聚物3。


3. 画出 1 对 2 加成反应所形成的第一个中间体的结构式。按照反应机理,接下来将生成一个气体分子, G。写出此气体分子的结构式。

G:

4. 红外光谱(IR)可用于表征这些化合物。在右框中选择与左边红外光谱相符的化合物 1、2 或 3。

5. 图 1 展示了共聚物 **3** (DMSO- d_6 , 60 °C, 500 MHz)的 ¹H NMR 谱图。利用问题 2 中计算所得的 n 值,和部分或全部核磁共振信号的积分面积(如表 2 所示),<u>计算 3</u> 的数量平均摩尔质量 M_n 。为便于计算,在下图分子上圈出你用于计算的原子或原子团,并用表 2 中对应的符号(α , β ...)标示。

$$H \xrightarrow{N} \begin{pmatrix} O \\ N \\ H \end{pmatrix}_m \begin{pmatrix} O \\ O \\ N \\ O \end{pmatrix}_n OCH_3$$

 $M_{\rm n}$ = ${
m kg\ mol^{-1}}$ 保留至小数点后两位。

1 与 **2** 在 40℃下反应 20 h 后生成共聚物 **3a**, 25 h 后生成 **3b**, 反应 30 h 后生成 **3c**。图 2 展示了这些聚合物的尺寸排除色谱(SEC)的测定结果。

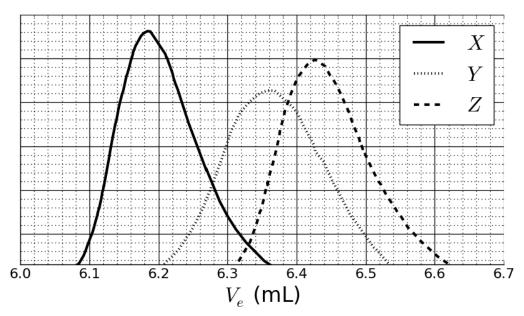


图 2. 3a、3b 和 3c 的 SEC 色谱图与洗脱液体积 V_c 的关系图。

6. 在以下空格中划出哪一曲线对应于共聚物 3a、3b 或 3c。

3a:	$\square X$	$\square Y$	$\Box Z$	
3b :	$\square X$	$\square Y$	$\square Z$	
3c:	$\square X$	$\square Y$	$\square Z$	

可以利用已知质量(3、30、130、700、以及 7000 kg mol⁻¹)的标准聚合物的混合物校准 SEC (图 3)。 摩尔质量的对数与洗脱液体积 V。成线性关系。

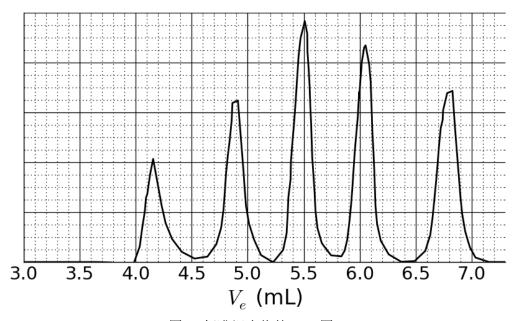
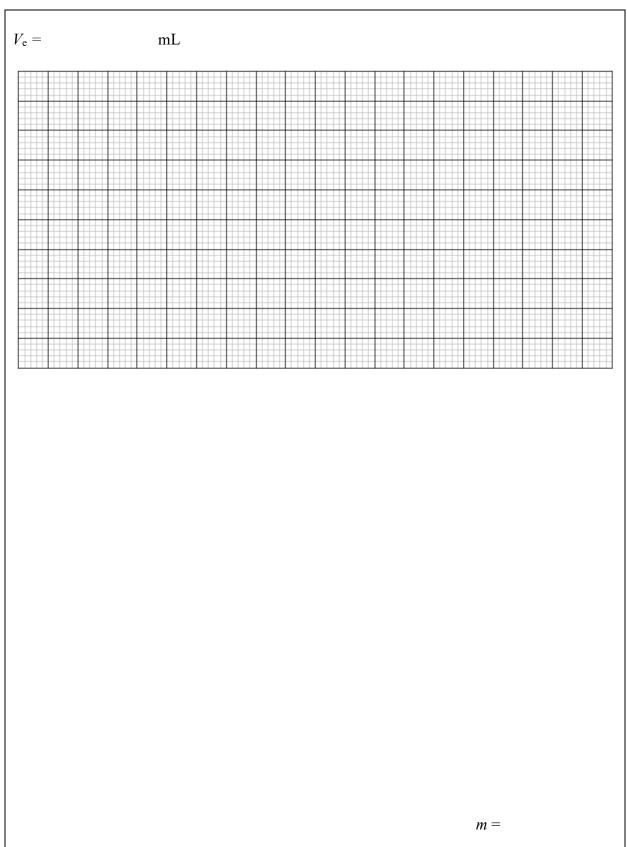
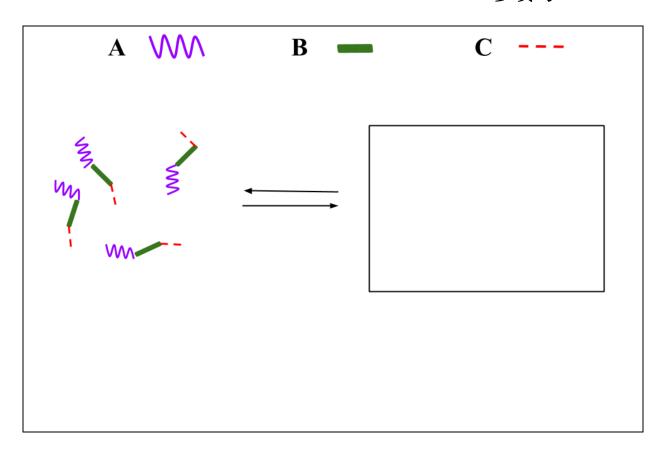



图 3. 标准混合物的 SEC 图。

7. 根据图 2 和图 3 中的 SEC 曲线,<u>确定</u>对应于曲线 X的聚合物的 V_e ,并用它来<u>估算</u>其第二片段的聚合度 m。列出具体的计算过程;你可以使用计算器或绘制图表。

三嵌段共聚物的合成

为了胶束形成等在生物学方面应用,可通过利用单体5引入中间片段B,合成三嵌段共聚物9。


catalyst: 催化剂

8. 画出化合物 5、7和 8的结构式。

5 (除了化合物 6: A-B 外,没有再生成其他化合物)
7(最后一步会生成一种气体)
8

9. 两亲性三嵌段共聚物,如 9: **A-B-C**,可应用于医疗,因为它们在水中可以自组装形成胶束 (pH = 7),从而用于药物载体。将共聚物的每个片段归属于一个属性。**画**一个只由图中 4 条聚合链组装而成的胶束图。

A:	□ hydrophobic 疏水	□ hydrophilic 亲水	
B :	□ hydrophobic 疏水	□ hydrophilic 亲水	
C :	□ hydrophobic 疏水	□ hydrophilic 亲水	

公 司 師	Question 问题	1	2	3	4	5	6	7	8	9	10	11	Total 总分
第7题 T7 6%	Points 分数	4	12	2	2	2	5	5	8	4	5	5	54
0%	Score 得分												

第7题 T7: [2]索烃分子中环的运动

2016 年,诺贝尔化学奖授予了 J.-P. 索维奇(J.-P. Sauvage)、J. F. 斯托达特爵士(Sir J. F. Stoddart) 和 B. L. 费林加(B. L. Feringa),以表彰他们对"设计和合成分子机器"的贡献。其中的一个例子是[2] 索烃,一种由两个环互锁而形成的分子。在这个体系中,一个大环包含一个邻菲罗啉配体(双齿配体),第二个大环则包含两个配体:邻菲罗啉和三联吡啶(三齿)。铜离子可与每个大环中的一个配体配位。依赖于铜的氧化态(+I或+II),可以得到两种不同构型的配位物(图 1).。

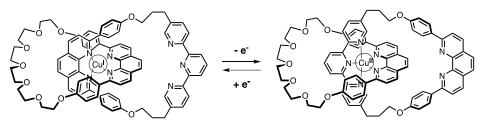


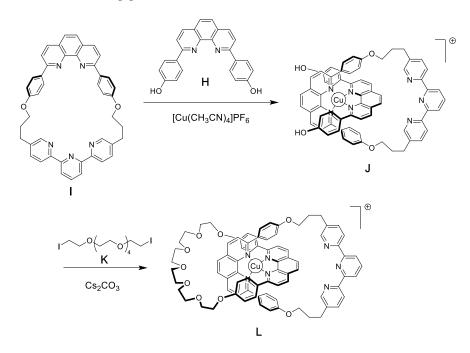
图 1. [2]索烃中环的多稳定性

大环 | 合成方法如下:

$$\begin{array}{c} \text{Br} \\ \text{C} \\ \text{Closediny.} \end{array}$$

$$\begin{array}{c} \text{Closediny.} \\ \text{Closediny.} \end{array}$$

1. 画出 B 的结构式。


B

2.	画出E、F以及G的结构式。
E	
F	
G	
3.	从以下反应条件中, <u>选出</u> 哪一种条件可以使 \mathbf{D} 转化为 \mathbf{E} 。
	H ⁺ , H ₂ O OH ⁻ , H ₂ O
	NaBH ₄ , CH ₃ OH
	H ₂ , Pd/C, THF
4.	在合成策略中,MsCl 的作用是获得
	一个离去基团 一个保护基团
	一个钝化基团
	一个定位基团
5.	G可由F和LiBr在丙酮中反应得到。这个反应属于:
	芳香亲电取代反应 芳香亲核取代反应
	$S_N 1$ $S_N 2$
1 '	

6. <u>画出</u> $\mathbf{F} \to \mathbf{G}$ 反应中与决速步相关的过渡态,示出立体几何。只需给出一个反应中心。与反应碳原子连接的碳链可以用 \mathbf{R} 表示。

过渡态:

利用铜配合物的模板作用合成[2]索烃 L:

7. <u>写出</u>基态 Cu(0)完整的核外电子构型。指出 Cu 在配合物 J 中的氧化态,并写出其对应的自由离子的核外电子构型。

子的核外电子构型。 Cu(0) 核外电子构型:

Cu 在配合物 J 中的氧化态:

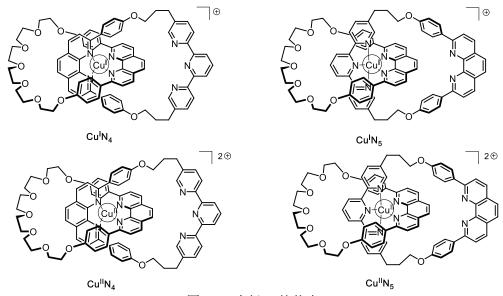
Cu 在配合物 J中的核外电子构型:

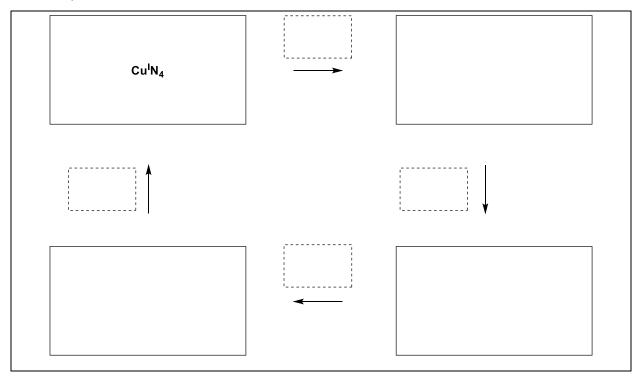
8. **勾选**铜离子在 L 中的几何构型。假设配体以理想几何围绕着铜中心,<u>画出</u> d 轨道在相应晶体场中的能级分裂图,**填入**电子。**指出**该配合物中电子自旋的最大值(*S*)。

同离子在 L 中的几何构型为:	
□ 八面体	
□ 四面体	
□ 平面四边形	
□ 三角双锥	
轨道的能级分裂图,填入电子:	
S =	

9. 以下化合物中,哪些可以与 L 中铜配位将 L 转化为无配位的[2]索烃:

在[2]索烃 L 中,铜离子可以有(+I) 或 (+II)两种氧化态,且二者处于不同的配位环境中(分别为四配位或者五配位)。




图 2. [2]索烃 L 的状态

Cu(I)配合物的稳定性可由其电子结构与稀有气体关联而得以解释。

10. 在空白处填写数字或在框中打勾:

Cu^lN₄配合物中,金属在配位场中有 ... 个电子。
Cu^lN₅配合物中,金属在配位场中有 ... 个电子。
和配合物 Cu^lN₅相比,配合物 Cu^lN₄□ 更(more)稳定或者 □ 更(less)不稳定。

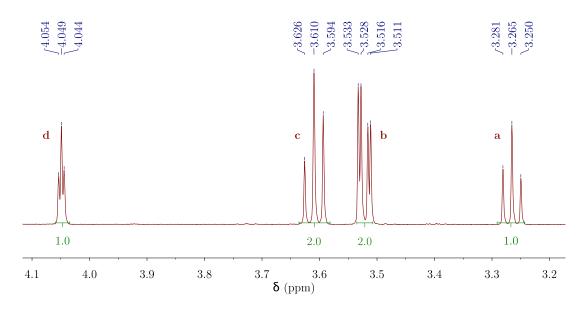
11. 在实线框中<u>填写</u>曾在图 2 中出现过的配合物的简式。在虚线框中,填入如下记号: (转动); +e⁻;-e⁻,从而完成如下转化图,实现分子机器系统的电化学控制。

第8题	Question 问题	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total 总分
T8	Points 分数	2	6	2	2	11	2	4	3	4	2	6	8	2	6	4	64
070	Score 得分																

第8题 T8: 肌醇的合成与鉴定

在此题中,我们依据以下所示的 β-葡萄糖结构定义"立体结构""3D structure"和"透视式""perspective formula"。

肌醇为环己-1,2,3,4,5,6-六醇。某些六元碳环化合物,尤其是 myo-肌醇,常参与许多生物学过程。


myo-肌醇的结构

1.	<u>画出</u> 肌醇的结构式,无须示出具体的立体化学。
	之人八乙与人乙 o 孙与托廷呐及大力的工目的之及目的人

这个分子包含了9种包括对映体在内的不同的立体异构体。

2. 画出所有具有光学活性的立体异构体的立体结构。

此题研究了一种特殊肌醇,即 myo-肌醇的结构。myo-肌醇只有一个椅式构象为优势构象,可以从 1H NMR 谱中推断其具体结构。以下谱图是以 D_2O 为溶剂在 600 MHz 核磁共振仪上得到的。在该谱图中没有观察到该化合物的其他信号。积分面积值展示在每个信号峰下面。

3. <u>画出</u>该 1 H NMR 测试样品中 myo-肌醇在 D_2O 溶剂中的主要化合物分子式,该分子式须与核磁共振氢谱中观察到的氢数目一致。

4. 基于氢信号峰的数量和积分面积值,判断此分子中有几个对称面。

5. 依据 myo-肌醇最稳定的构象,在以下透视式中的直立键和平伏键上<u>画出</u>相应的基团。然后根据上面的 NMR 谱图,用相应的字母(\mathbf{a} , \mathbf{b} , \mathbf{c} 或 \mathbf{d}) 标记每一种氢。如,氢 \mathbf{a} 必须在下图所示的碳 \mathbf{a} 上。<u>画出</u>其立体结构。

肌醇的合成

为了医学上的应用,肌醇常作为原料用于大量合成一些肌醇磷酸盐。我们将研究以溴代二醇 **1** 为原料合成肌醇 **2**。

6. 化合物 2 与 3 的结构之间的准确关系 为:

对映异构体
差向异构体
非对映异构体
位阻异构体

以化合物1为原料经7步反应可以合成肌醇2。

7.	画出化合物 4 的立体结构。
4	
8.	生成化合物 5 的反应须发生在电子云密度高的双键上。根据以下化合物 4 的替代结构,在 1-溴-1,3-环己二烯的结构式中 <u>圈出</u> 具有电子云密度高的双键,并再画两个相同的结构式,在这些结构式上分别明确 <u>表示出</u> 由于溴取代后产生的电子效应。
	Br
9.	<u>画出</u> 非对映异构体主产物 5 的立体结构。
5	
10.	以对映体纯的化合物1为原料,经此合成路线,可以得到总共多少个化合物5的立体异构体?
11.	在由 5 转化为 6 的这步反应中,还生成了另一个具有相同分子式的化合物 6'。 画出 6 和 6'的立体结构。
6	6'

12.	<u>画出</u> 非对映异构体主产物 8 和 9 的立体结构。	
8		9
13.	合成 2 的最合适反应条件 A 为:	
	H ₂ , Pd/C K ₂ CO ₃ , HF HCOOH, H ₂ O BF ₃ ·OEt ₂	
14.		,还可以得到另一个立体异构体。考虑到合成过 聚保持与合成 2 一致的当量数, <u>画出</u> 该立体异构
	enantiomers 对映异构体 epimers 差向异构体 diastereoisomers 非对映异构体 atropoisomers 位阻异构体	
15.	在由1合成2的过程中,以下哪些步骤 <u>属于</u> 保持	户基或反应中起导向作用的基团的脱除反应?
	$ \begin{array}{c} 1 \rightarrow 4 \\ 4 \rightarrow 5 \\ 5 \rightarrow 6 \\ 6 \rightarrow 7 \\ 7 \rightarrow 8 \\ 8 \rightarrow 9 \\ 9 \rightarrow 2 \end{array} $	

222 O BTG	Question 问题	1	2	3	4	5	6	7	8	9	10	11	12	13	Total 总分
第9题 T9 7%	Points 分数	2	2	4	3	2	17	1	1	2	4	2	2	2	44
7%	Score 得分														

第9题 T9: 左旋布比卡因(levobupivacaine)的合成

Part I.

局部麻醉剂布比卡因(市场上为 Marcaine)属于世界卫生组织的基本药物名录。尽管此药物常以消旋混合物方式使用,研究结果表明布比卡因的一个对映体左旋布比卡因 (levobupivacaine),具有更低的心脏毒性,因此要比消旋体更安全。以天然氨基酸 L-赖氨酸为原料合成左旋布比卡因。

L-Lysine hydrochloride

L-赖氨酸盐酸盐

1. **判断** L-赖氨酸盐酸盐中手性中心的绝对构型,依据取代基的大小优先顺序确定你的答案,并将 1、2、3、以及 4 填入相应的空格中。

绝对构型:	Priority 从大到小的优先顺序 1 > 2 > 3 > 4:	
Configuration:	$NH_3^+_{Cl}$ NH_3^+ $COO^ H$	
$\square R$		

- 2. L-赖氨酸的前缀 L 是指相对构型。以下表述准确的是:
- □ 所有天然 L-氨基酸都是左旋的。
- □ 天然 L-氨基酸可以是左旋的也可以是右旋的。
- □ 所有天然 L-氨基酸都是 S构型的。
- □ 所有天然 L-氨基酸都是 R 构型的。

我们常希望只用 L-赖氨酸中的一个氨基参与反应。碱性的 Cu²⁺盐水溶液可以选择性地使其中一个氨基不参与反应。这个配合物一旦形成后,只有没有配位的氨基会参与后续反应。

3. 基于 L-赖氨酸是一个双齿配体,在碱性溶液中,两分子的 L-赖氨酸与一个 Cu^{2+} 配位,<u>画出</u>此配合物的结构式。

配合物结构式:

ボコ 人 4/m //ナ 4/カ →

幸运的是,在下图所示的 levobupivacaine 合成路线中,即使没有 Cu^{2+} 盐参与,也是同一个氨基 参与后续反应:

(benzyloxycarbonyl chloride) (*N,N'*-dicyclohexylcarbodiimide) (*p*-toluenesulfonyl chloride) dilute: 稀; aqueous buffer: 缓冲水溶液; reagent: 试剂; reactive intermediate: 反应中间体 在画答案的结构式时,你也可以使用这些以上所示的缩写。

4. <u>画出</u>化合物 A 的结构式,必须画出准确的立体构型。

A		

5. L-赖氨酸转化为 A 的反应属于(选择正确的答案):

□ 一个对映选择性反应。 □ 一个非对映选择性反应。

□ 一个区域选择性反应。

$\mathbf{B} \ C_{14} H_{20} N_2 O_4$	C C ₁₆ H ₂₁ NO ₆
D	E C ₂₉ H ₃₄ N ₂ O ₆ S
	2 02)2234. 12 0 0 2
$\mathbf{F} \ C_{21} H_{28} N_2 O_4 S$	
7. 在化合物 C 转化为 D 中 DCC 的作用	用是:
□ 氨基的保护基。 □ 羟基的保护基。 □ 酰胺基形成的活化剂。	
8. 在合成中,利用 TsCl 可以促成:	
□ 氨基的亲核取代反应。 □ 氨基的亲电取代反应。 □ 羟基的亲核取代反应。	

9. 试剂 H 可以是以下哪些试剂:	
□ 稀 HCl	□ Zn/HCl
□ K ₂ CO ₃	\square H ₂ SO ₄
□ 稀 KMnO ₄ □ SOCl ₂	□ 稀 NaOH □ PCl5
	□ rCi5
10. <u>画出</u> 左旋布比卡因的结构式,必须画出准确的立	体构型。
左旋布比卡因 C ₁₈ H ₂₈ N ₂ O	
Part II.	
左旋布比卡因的合成须以对映体纯的 L-赖氨酸为是将其与 Mosher 酸反应转化为酰胺 (下图为 (S) 构型	
_O CI	=3
HO	
$\left[\left[\begin{array}{c} \left(S \right) \\ O \end{array} \right] \right]$	
(S)-Mosher	's acid
11. 画出 L-赖氨酸中的 α-氨基与(S)-Mosher 酸反应车	
的立体构型。	7化为既放的结构式; 相定农劳母 不干住中心
	_
12. 外消旋的赖氨酸与(S)-Mosher 酸反应可以生成 多 化)?	<u>少个</u> 产物(假定赖氨酸中只有 α-氨基能被衍生
□ 两个非对映异构体。 □ 四个非对映异构体。	
□ 四个非对映异构体。 □ 两个对映异构体的消旋混合物。	
□ 四个化合物:两个对映异构体,两个非对映异构	体。
13. 在赖氨酸与(S)-Mosher 酸衍生化反应后,可以用	于定量确定赖氨酸对映体纯度的方法是:
□ NMR 谱图	
□ 液相色谱	
□ 质谱	
□ UV-vis 紫外可见吸收光谱	