THEORETICAL EXAM

51st — International Chemistry Olympiad France — Paris — 2019

Making science together!

2019-07-26

MINISTÈRE DE L'ÉDUCATION NATIONALE ET DE LA JEUNESSE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE ET DE L'INNOVATION

General instructions

- This theoretical exam booklet contains 64 pages.
- You may begin writing as soon as the Start command is given.
- You have 5 hours to complete the exam.
- All results and answers must be clearly written in pen in their respective boxes on the exam papers. Answers written outside the answer boxes will not be graded.
- If you need scrap paper, use the back of the exam sheets. Remember that nothing outside the boxes will be graded.
- Use only the pen and calculator provided.
- The official English version of the exam booklet is available upon request and serves for clarification only.
- If you need to leave the exam room (to use the toilet or have a snack), raise the corresponding IChO card. An exam supervisor will come to accompany you.
- For multiple-choice questions: if you want to change your answer, fill the answer box completely and then make a new empty answer box next to it.
- The supervisor will announce a 30-minute warning before the Stop command.
- You must stop your work immediately when the Stop command is announced. Failure to stop writing by ½ minute or longer will lead to nullification of your theoretical exam.
- After the Stop command has been given, place your exam booklet back in your exam envelope, then wait at your seat. The exam supervisor will come to seal the envelope in front of you and collect it.

GOOD LUCK!

Table of Contents

This theoretical exam is composed of nine independent problems, as follows. Their relative weight is indicated in brackets.

Problem T1: Infinite well and butadiene	(6%)	p. 8
Problem T2: Hydrogen production by water-splitting	(7%)	p. 13
Problem T3: About silver chloride	(5%)	p. 20
Problem T4: From gunpowder to the discovery of iodine	(7%)	p. 25
Problem T5: Complexes for the formation of nanomachines	(8%)	p. 31
Problem T6: Characterisation of a block-copolymer	(8%)	p. 41
Problem T7: Ring motion in a [2]catenane	(6%)	p. 49
Problem T8: Identification and synthesis of inositols	(6%)	p. 54
Problem T9: Synthesis of levobupivacaine	(7%)	p. 60

Physical constants and equations

In these tasks, we assume the activities of all aqueous species to be well approximated by their respective concentration in mol L^{-1} . To further simplify formulas and expressions, the standard concentration $c^{\circ} = 1 \text{ mol } L^{-1}$ is omitted.

Avogadro's constant:

Universal gas constant:

Standard pressure:

Atmospheric pressure:

Zero of the Celsius scale:

Faraday constant:

Watt:

Kilowatt hour:

Planck constant:

Speed of light in vacuum:

Elementary charge:

Electron-volt

Electrical power:

Power efficiency:

Planck-Einstein relation:

Ideal gas equation:

Gibbs free energy:

 $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ $p^{\circ} = 1 \text{ bar} = 10^{5} \text{ Pa}$ $P_{\text{atm}} = 1 \text{ atm} = 1.013 \text{ bar} = 1.013 \times 10^5 \text{ Pa}$ 273.15 K $F = 9.6485 \times 10^4 \text{ C mol}^{-1}$ $1 \text{ W} = 1 \text{ J s}^{-1}$ $1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$ $h = 6.6261 \times 10^{-34} \text{ J s}$ $c = 2.998 \times 10^8 \text{ m s}^{-1}$ $e = 1.6022 \times 10^{-19} \,\mathrm{C}$ $1 \text{ eV} = 1.6022 \times 10^{-19} \text{ J}$ $P = \Delta E \times I$ $\eta = P_{\text{obtained}}/P_{\text{applied}}$ $E = hc/\lambda = h \nu$ pV = nRTG = H - TS $\Delta_{\rm r}G^{\circ} = -RT \ln K^{\circ}$ $\Delta_{\rm r}G^{\circ} = -n F E_{\rm cell}^{\circ}$ $\Delta_{\rm r}G = \Delta_{\rm r}G^{\rm o} + RT\ln Q$

 $N_{\rm A} = 6.022 \times 10^{23} \, \rm mol^{-1}$

 $Q = \frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}$

 $pH = pK_a + \log \frac{[A^-]}{[AH]}$

 $E = E^{o} - \frac{RT}{zF} \ln Q$

at $T = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$

 $A = \varepsilon lc$

 $[A] = [A]_0 - kt$

Beer-Lambert law:

Rate laws in integrated form:

Nernst–Peterson equation:

Reaction quotient Q for a reaction

Henderson-Hasselbalch equation:

 $a \operatorname{A}(aq) + b \operatorname{B}(aq) = c \operatorname{C}(aq) + d \operatorname{D}(aq)$:

the reduction half-reaction

where Q is the reaction quotient of

- Zero order:
- First order:
- Second order:

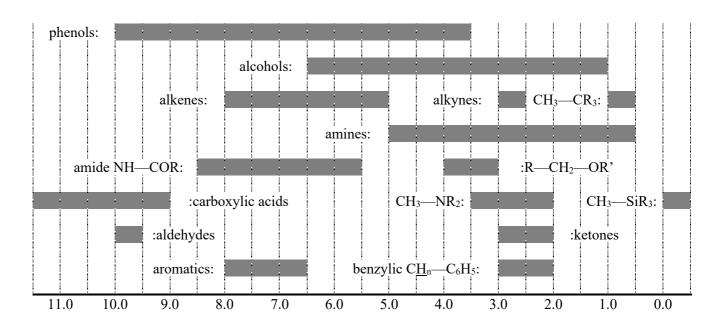
Half-life for a first order process:

Number average molar mass M_n :

Mass average molar mass M_w :

Polydispersity index I_p :

$$ln[A] = ln[A]_0 - kt
1/[A] = 1/[A]_0 + kt
\frac{ln2}{k}
M_n = \frac{\sum_{i} N_i M_i}{\sum_{i} N_i}
M_w = \frac{\sum_{i} N_i M_i^2}{\sum_{i} N_i M_i}
I_p = \frac{M_w}{M_n}$$


Periodic table

1																	18
1 H 1.008	2											13	14	15	16	17	2 He _{4.003}
3	⁴ (5	6 (7	8 (9	10
Li 6.94	Be 9.01											B 10.81	C	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Αl	Si	Р	S	CI	Ar
22.99	24.31											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	-	Xe
85.47	87.62	88.91	91.22	92.91	95.95	-	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57-71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	-	-	-
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89- 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
-	232.0	231.0	238.0	·	-	-	-	-	-	-	-	-	-	-

¹H NMR
Chemical shifts of hydrogen (in ppm / TMS)

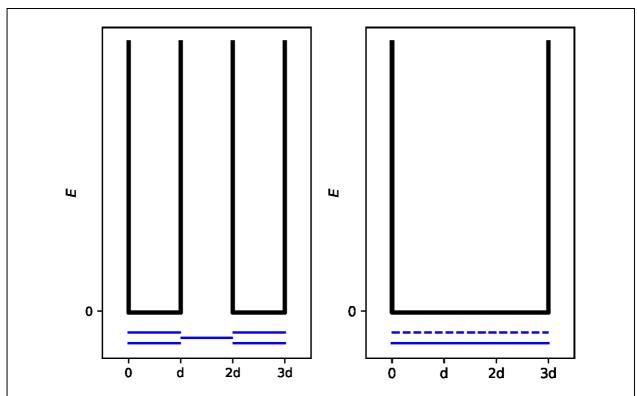
H-H coupling constants (in Hz)

Hydrogen type	$ J_{ab} $ (Hz)			
$R_2CH_aH_b$	4-20			
R ₂ H _a C—CR ₂ H _b	2-12 if free rotation: 6-8 ax-ax (cyclohexane): 8-12 ax-eq or eq-eq (cyclohexane): 2-5			
R ₂ H _a C—CR ₂ —CR ₂ H _b	if free rotation: < 0.1 otherwise (rigid): 1-8			
RH _a C=CRH _b	cis: 7-12 trans: 12-18			
R ₂ C=CH _a H _b	0.5-3			
H _a (CO)—CR ₂ H _b	1-3			
RH _a C=CR—CR ₂ H _b	0.5-2.5			

eq = equatorial, ax = axial

IR spectroscopy table

Vibrational mode	σ (cm ⁻¹)	Intensity
alcohol O—H (stretching)	3600-3200	strong
carboxylic acid O—H (stretching)	3600-2500	strong
N—H (stretching)	3500-3350	strong
≡C—H (stretching)	3300	strong
=C—H (stretching)	3100-3000	weak
C—H (stretching)	2950-2840	weak
-(CO)—H (stretching)	2900-2800	weak
C≡N (stretching)	2250	strong
C≡C (stretching)	2260-2100	variable
aldehyde C=O (stretching)	1740-1720	strong
anhydride C=O (stretching)	1840-1800; 1780-1740	weak; strong
ester C=O (stretching)	1750-1720	strong
ketone C=O (stretching)	1745-1715	strong
amide C=O (stretching)	1700-1500	strong
alkene C=C (stretching)	1680-1600	weak
aromatic C=C (stretching)	1600-1400	weak
CII. (bonding)	1400 1440	11
CH ₂ (bending)	1480-1440	medium
CH ₃ (bending)	1465-1440; 1390-1365	medium
C—O—C (stretching)	1250-1050	strong
C—OH (stretching)	1200-1020	strong
NO ₂ (stretching)	1600-1500; 1400-1300	strong


Problem	Question	1	2	3	4	5	6	7	8	9	10	11	Total
T1	Points	3	4	4	2	3	2	2	4.5	2.5	3	3	33
6%	Score												

Problem T1: Infinite well and butadiene

The buta-1,3-diene molecule is often written as CH_2 =CH-CH= CH_2 , with alternating single and double bonds. Nevertheless, its chemical reactivity is not consistent with this description and the π electrons are better described by a distribution along the three bonds:

This system can be modelled as a 1D box (*i.e.* an infinite well) where the electrons are free. The energy of an electron in an infinite well of length L is: $E_n = \frac{n^2 h^2}{8m_e L^2}$, where n is a **non-zero** positive integer.

1. Two different models are studied. <u>Sketch</u> at least the three lowest energy levels, E_n , <u>for each model</u> on the respective diagrams, showing how the relative energy levels differ within and between models.

Model 1 (« localised »): The π electrons are localised on the outer bonds and exist in two separate infinite potential wells of length d.

Model 2 (« **delocalised** »): The π electrons are delocalised across the whole molecule and exist in a single infinite potential well of length 3d.

2. Place the π electrons for model 1 in the diagram and express the total energy of the π system in model 1, as a function of h, m_e and d.

E(1) =

3. Place the π electrons for model 2 in the diagram and express the total energy of the π system in model 2, as a function of h, m_e and d.

E(2) =

The conjugation energy is the total energy of the actual π system, minus the sum of the energies of ethylene molecules involving the same number of electrons.

4. Express the conjugation energy, ΔE_c , of butadiene, as a function of h, m_e and d.

 $\Delta E_{\rm c} =$

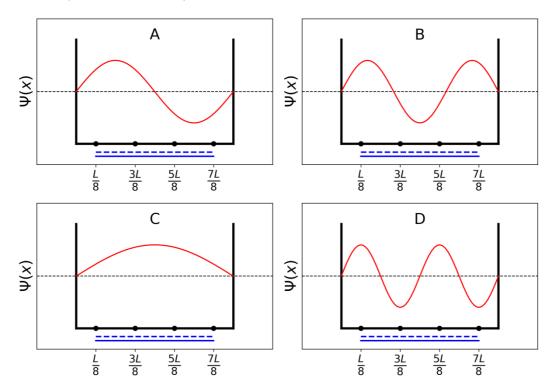
Models 1 and 2 are too simplistic. A new model is described here.

5. <u>Draw</u> three other resonance structures of butadiene using Lewis notation.

 H_2C CH_2

To take into account the size of carbon atoms, model 2 is now modified into model 3, as follows:

- the new length of the well is L and is located between 0 and L;
- the carbon atoms are located at L/8; 3L/8; 5L/8 and 7L/8.


For each level n, the π wavefunction is:

$$\psi_{\rm n}(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

and the π electron density for a system with $N\pi$ electrons is:

$$\rho(x) = 2 \sum_{i=1}^{N/2} |\psi_i(x)|^2$$

The four π wavefunctions, which correspond to the molecular orbitals of the π system, are shown below (in random order).

6. Order the energies of the four π wavefunctions (E_A , E_B , E_C and E_D).

<	<	<	

7. Give the labels (A, B, C or D) of the orbitals that are filled with electrons in butadiene.

8. Using model 3, <u>give</u> the values of the π wavefunctions ψ_n for occupied levels at positions 0, L/4 and L/2, for n = 1 and n = 2, as a function of L.

 $\psi_1(0) =$

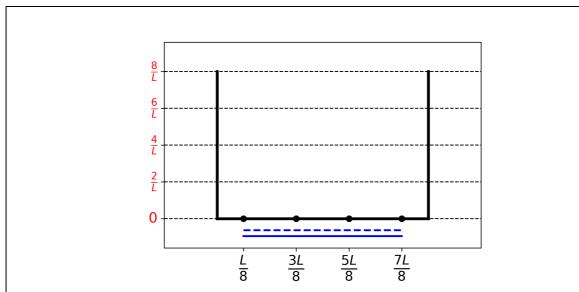
 $\psi_1\left(\frac{L}{4}\right) =$

 $\psi_1\left(\frac{L}{2}\right) =$

 $\psi_2(0) =$

 $\psi_2\left(\frac{L}{4}\right) =$

 $\psi_2\left(\frac{L}{2}\right) =$


9. Using model 3, <u>give</u> the value of the π electron density at each of the positions 0, L/4 and L/2.

$$\rho(0) =$$

$$\rho\left(\frac{L}{4}\right) =$$

$$\rho\left(\frac{L}{2}\right) =$$

10. **<u>Draw</u>** the π electron density between 0 and L.

11. <u>Order</u> the following CC bonds (B1, B2, ..., B5) by increasing length, using the symbols = or <:

B1: C1C2 in the butadiene molecule
B2: C2C3 in the butadiene molecule
B3: C3C4 in the butadiene molecule
CC in the ethane molecule

B5: CC in the ethane molecule

Problem	Question	1	2	3	4	5	6	7	8	9	10	Total
T2	Points	1	4	2	3	3	6	4	1	8	2	34
7%	Score											

Problem T2: Hydrogen production by water-splitting

Data:

Compound	H ₂ (g)	H ₂ O(1)	H ₂ O(g)	O ₂ (g)
$\Delta_{\rm f}H^{\circ}~({ m kJ~mol}^{-1})$	0	-285.8	-241.8	0
$S_{\mathrm{m}}^{\circ} (\mathrm{J} \; \mathrm{mol}^{-1} \mathrm{K}^{-1})$	130.6	69.9	188.7	205.2

Molecular hydrogen (H_2) can be used as an alternative to carbon dioxide-emitting fuels. Lowering the cost and the environmental impact of its production is a major challenge. Watersplitting is a promising technology in this field.

1.	<u>Write</u> the balanced equation of the splitting reaction of liquid water <u>using a stoichiometric</u> <u>coefficient of 1 for water</u> .
2.	Using only the provided thermodynamic data, <u>justify numerically</u> whether this reaction is thermodynamically favorable at 298 K.
Са	alculations:
Re	eaction thermodynamically favorable?
	□ Yes □ No

Acidified water can be split electrochemically (Fig. 1). Gas bubbles are formed at both electrodes.

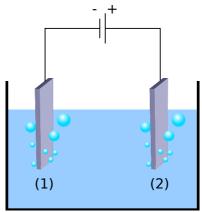


Fig. 1 – Water-splitting electrochemical cell.

3. Write the balanced half equation for the reaction occurring at each electrode.

On electrode (1):		
On electrode (2):		

4. Using only the provided thermodynamic data (or your answer to question 2), <u>derive</u> the condition on the applied voltage between electrodes, $\Delta E_{applied}$ compared to a value ΔE_{th} (to be calculated), for the process to be thermodynamically favorable at 298 K when all reactants and products are in their standard state. <u>Tick</u> the correct condition and <u>calculate</u> the numerical value of ΔE_{th} to 3 decimal places.

Calculation: $\Box \quad \Delta E_{\text{applied}} = \Delta E_{\text{th}}$ $\Box \quad \Delta E_{\text{applied}} > \Delta E_{\text{th}} \qquad \Delta E_{\text{th}} = \dots \quad V(\text{to 3 decimal places})$ $\Box \quad \Delta E_{\text{applied}} < \Delta E_{\text{th}} \qquad If you could not calculate \Delta E_{\text{th}}, the value 1.200 V$ can be used in the rest of the problem.

Experimentally, a higher voltage is needed to observe water splitting. For a given Pt cathode, the minimum voltage necessary to observe water splitting, ΔE_{\min} , depends on the nature of the anode, as displayed in the table below:

Anode	ΔE_{\min} (V)
IrO_x	1.6
NiO_x	1.7
CoO_x	1.7
Fe_2O_3	1.9

The difference between ΔE_{\min} and ΔE_{th} is responsible for losses in the device.

5. <u>State</u> the expression of the device power efficiency η_{elec} (the fraction of the power used for water splitting) as a function of ΔE_{th} and ΔE_{min} . Assuming an identical current value, I, <u>calculate</u> the water electrolysis power efficiency when a Pt cathode and a Fe₂O₃ anode are used. <u>State</u> the most efficient anode.

An alternative to water electrolysis is direct photocatalytic water-splitting. It uses a semiconductor that can be activated by absorbing light.

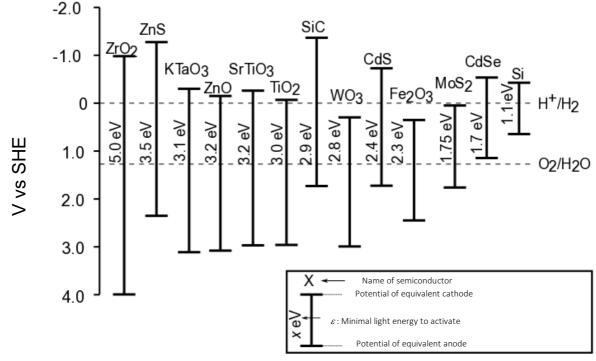


Fig. 2 – Activation condition and equivalent electrode potentials of different semiconductors.

Dashed lines correspond to water oxidation and reduction potentials. SHE = Standard

Hydrogen Electrode

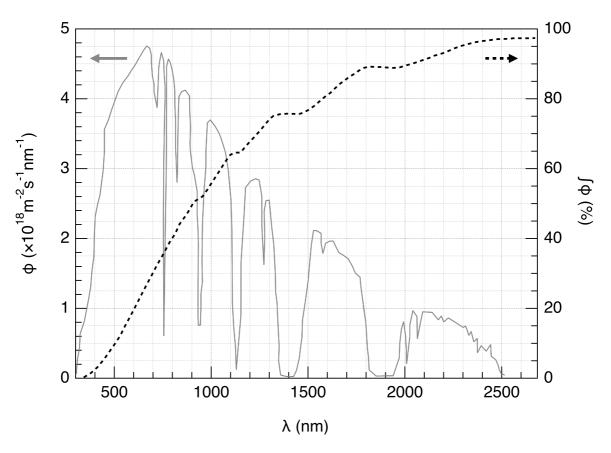


Fig. 3 – Left axis: Spectral distribution of the solar photon flux ϕ . The photon flux is the number of photons per unit area per unit time arriving on the semiconductor. Right axis and dashed line: cumulative photon flux (i.e. fraction of the photon flux with smaller wavelength).

6. <u>Estimate</u> the fraction of the solar photon flux that can activate the following semiconductors: TiO₂, CdS, Si. <u>State</u> explicitly the equations and units used for the calculation.

Explanation / calculation:		
	A	

	Approximate fraction	
TiO ₂		%
CdS		%
Si		%

The activation of the semi-conductor results in a modification of the surface potentials, so that it can be seen as two electrodes at different potentials.

_	data in Fig 2, choose the can play the roles of both a	* *	e following list that, once water-splitting reaction.
\Box ZrO ₂	□ ZnO	☐ TiO ₂	□ WO ₃
□CdS	\Box Fe ₂ O ₃	☐ CdSe	□ Si
	semiconductor that, used a or water splitting upon a gi		is expected to be the most
T = 25 °C at p photoelectrode	atm was recently studied. U	sing an incident power ligh	by simulated solar light at ht of $P = 1.0 \text{ kW m}^{-2}$ and a $Y = 0.37 \text{ cm}^3$ of $H_2(g)$ was
9. <u>Calculate</u>	the power efficiency $\eta_{ m direc}$	t of the conversion.	
Calculation:			

If you could not calculate η_{direct} , the value $\eta_{\text{direct}} = 10\%$ can be used in the rest of the problem.

 $\eta_{
m direct} =$

%

Two methods of converting solar energy to hydrogen can be compared: direct photocatalysis, and indirect photo-electrolysis combining a photovoltaic panel with an electrolyser. The efficiency of photovoltaic panels on the market is around $\eta_{panels} = 20\%$.

10. <u>Compare</u> the power efficiencies of the two methods, η_{direct} and η_{indirect} , using Fe₂O₃ and Pt electrodes for the electrolysis.

Calculation:		
\square $\eta_{ m direct}$ $>$ $\eta_{ m indirect}$	\square $\eta_{ ext{direct}} pprox \eta_{ ext{indirect}}$	\square $\eta_{ ext{direct}} < \eta_{ ext{indirect}}$

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	12	Total
T3	Points	1	3	3	3	4	2	7	2	2	3	4	6	40
5%	Score													

Problem T3: About silver chloride

Data at 298 K:

 $pK_{s1}(AgC1) = 9.7; pK_{s2}(Ag_2CrO_4) = 12$

Formation constant of the complex $[Ag(NH_3)_n]^+$: $\beta_n = 10^{7.2}$

Potentials relative to the standard hydrogen electrode:

Standard potential of $Ag^+/Ag(s)$: $E^{\circ}(Ag^+/Ag(s)) = 0.80 \text{ V}$

Observed potential of $O_2(aq)/HO^-(aq)$ (in seawater): $E'(O_2(aq)/HO^-(aq)) = 0.75 \text{ V}$

Part A: Quotes from a chemistry lesson by Louis Joseph Gay-Lussac

The following quotes from a chemistry lesson by Louis Joseph Gay-Lussac (French chemist, 1778–1850) deal with some properties of silver chloride.

Quote A: "I will now talk about silver chloride, a milky-white solid. It is easily obtained by pouring hydrochloric acid into an aqueous solution of silver nitrate."

Quote B: "This salt has no taste since it is insoluble."

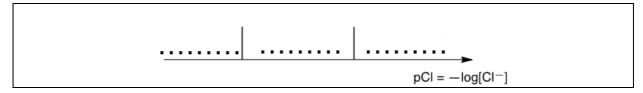
Quote C: "This compound is completely insoluble in alcohol and even in acids, except in concentrated hydrochloric acid which dissolves it readily."

Quote D: "On the other hand, silver chloride is highly soluble in aqueous solution of ammonia."

Quote E: "Then, we can make silver chloride appear again by adding an acid which reacts with ammonia."

Quote F: "If you take a bowl made of silver to evaporate salty seawater, you will get impure sodium chloride, mixed with a milky-white solid."

1.	Quote A:	Write the	balanced	equation	for the synt	thesis of A	AgCI(s	s).
----	----------	-----------	----------	----------	--------------	-------------	--------	-----


2. Quote B: Calculate the solubility, s , of AgCl(s) in water in mol L ⁻¹ at 298 K.	
Calculation:	

s =

51st IChO – Theoretical Exam

 $mol L^{-1}$

3. **Quote C:** In a highly concentrated solution of chloride ions, a well-defined complex of stoichiometry 1:2 is formed. On the following qualitative axis (with pCl increasing from left to right), **place** in each space the silver-containing species that is predominant (or exists, for solids). pCl values at boundaries are not expected.

Quote D: When ammonia is added to silver chloride, a well-defined complex of stoichiometry n is formed.

4. Write the balanced equation corresponding to the synthesis of the complex $[Ag(NH_3)_n]^+$ from silver chloride and <u>calculate</u> the corresponding equilibrium constant.

Equation:	
Calculation:	
	K =
	If you could not calculate K , the following value can be used in the rest of the problem: $K = 10^{-3}$

5. Ammonia is added to 0.1 mol of silver chloride in 1 L of water until the last bit of solid disappears. At this moment, $[NH_3] = 1.78 \text{ mol } L^{-1}$. **Determine** the stoichiometry of the complex ignoring dilution effects.

Calculation:	
n =	

6.	write the balanced equation corresponding to quote E.
7.	Assuming that seawater is slightly basic and rich in dioxygen, and that silver metal can reduce dioxygen in such conditions, <u>write</u> a balanced equation corresponding to the formation of the solid mentioned in quote F. <u>Calculate</u> its equilibrium constant at 298 K. Use a stoichiometric coefficient of 1 for dioxygen when writing the balanced equation.
Eq	uation:
Ca	lculation:
	K =
	$oldsymbol{V}=$

Part B: The Mohr method

The Mohr method is based on the colorimetric titration of Cl⁻ by Ag⁺ in the presence of potassium chromate $(2K^+, CrO_4^{2^-})$. Three drops (~ 0.5 mL) of a K_2CrO_4 solution at about 7.76×10^{-3} mol L⁻¹ are added to $V_0 = 20.00$ mL of a sodium chloride solution of unknown concentration C_{Cl} . This solution is then titrated with silver nitrate (Ag⁺, NO₃⁻) at $C_{\text{Ag}} = 0.050$ mol L⁻¹, which immediately leads to the formation of solid **A**. A red precipitate (solid **B**) appears at $V_{\text{Ag}} = 4.30$ mL.

	<u>Calculate</u> the corresponding equili	brium constants.	
		<i>K</i> ° ₁ =	
		<i>K</i> ° ₂ =	
9.	<u>Identify</u> the solids.		
	Solid A:		
	Solid B :		
10.	. <u>Calculate</u> the unknown concentration	on, C_{Cl} , of chloride ions in the sodium chloric	de solution.
Ca	lculation:		
		$C_{\text{Cl}} =$	$\mathrm{mol}\;\mathrm{L}^{-1}$
		$C_{\rm Cl}$ = late $C_{\rm Cl}$, the value $C_{\rm Cl}$ = 0.010 mol L^{-1} d in the rest of the problem.	mol L ⁻¹
11.	can be use	late C_{Cl} , the value $C_{Cl} = 0.010 \text{ mol } L^{-1}$	mol L ⁻¹
	can be use	late C_{Cl} , the value $C_{Cl} = 0.010$ mol L^{-1} d in the rest of the problem.	mol L ⁻¹
	can be use . Calculate the minimum volume, V	late C_{Cl} , the value $C_{Cl} = 0.010$ mol L^{-1} d in the rest of the problem.	mol L ⁻¹
	can be use . Calculate the minimum volume, V	late C_{Cl} , the value $C_{Cl} = 0.010$ mol L^{-1} d in the rest of the problem.	mol L ⁻¹
	can be use . Calculate the minimum volume, V	late C_{Cl} , the value $C_{Cl} = 0.010$ mol L^{-1} d in the rest of the problem.	mol L ⁻¹
	can be use . Calculate the minimum volume, V	late C_{Cl} , the value $C_{Cl} = 0.010$ mol L^{-1} d in the rest of the problem.	mol L ⁻¹
	can be use . Calculate the minimum volume, V	late C_{Cl} , the value $C_{Cl} = 0.010$ mol L^{-1} d in the rest of the problem.	mol L ⁻¹
	can be use . Calculate the minimum volume, V	late C_{Cl} , the value $C_{Cl} = 0.010$ mol L^{-1} d in the rest of the problem.	mol L ⁻¹
	can be use . Calculate the minimum volume, V	late C_{Cl} , the value $C_{Cl} = 0.010$ mol L^{-1} d in the rest of the problem.	mol L ⁻¹

12. <u>Calculate</u> the residual concentration to precipitate. <u>Justify</u> why CrO ₄ ²⁻ comparing the two numerical values	is a good	chloride io indicator	ns when for the	silver chr titration	omate begins endpoint by
Calculation:					
	[Cl ⁻] _{res} =	:		mol L ⁻¹	
	[C1]res			mor L	
CrO ₄ ²⁻ is a good indicator for the titratio	n endpoint b	ecause:			

Problem	Question	1	2	3	4	5	6	7	8	Total
T4	Points	6	9	8	5	6	2	2	12	50
7%	Score									

Problem T4: From gunpowder to the discovery of iodine

In the 19th century, the French entrepreneur B. Courtois specialised in the production of nitrate \mathbf{A} ($\mathbf{M}_{\mathbf{A}}(\mathrm{NO}_3)_m$), used for gunpowder. Initially imported from Asia, \mathbf{A} was later produced from nitrate \mathbf{B} ($\mathbf{M}_{\mathbf{B}}(\mathrm{NO}_3)_n$) using an exchange reaction with compound \mathbf{C} , obtained from algae.

1.	<u>Find</u> the formulae of nitrates A and B knowing that they are anhydrous salts of alkaline or alkaline-earth metals (M_A and M_B). One of the nitrates contains no more than 1 w% of non-metallic impurities while the other contains 9 ± 3 w% of impurities. The content of metals M_A and M_B in the samples is 38.4 w% and 22.4 w% respectively. <u>Support</u> your answer with calculations.

A:

and **B**:

To obtain A, 262.2 g of solid compound C was added to the solution containing 442.8 g of B. B is in excess. 190.0 g of white precipitate D was formed and removed by filtration. The filtrate was evaporated, and the solid mixture E that was obtained was heated until the mass of the sample (containing only nitrites, NO_2^-) was constant. The only gaseous product was dioxygen (here considered to be an ideal gas): 60.48 L at 0 °C at 1 atm.

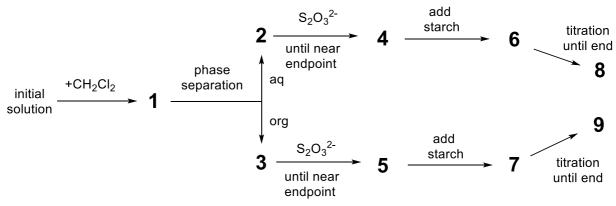
2.	Calculate the composition (in w% compounds A and B and no other imp	6) of mixture E assupurities, and that C was	ming that it anning anning that it	contained only
		w% of A :	and of B :	

3.	Determine the formula between B and C .	ne of compounds C and D a	nd <u>write</u> the equation for the reaction
		C :	and D :
Re	action between B and C :		

In 1811, when working with the ashes of algae, Courtois observed that copper vessels were worn out faster than usual. While he was studying this phenomenon, his cat entered the laboratory and spilled a solution of concentrated sulfuric acid onto dry algae ashes: violet vapour instantly came out of the vessel (1, sulfuric acid is the oxidising agent): iodine (I₂) had just been discovered! Iodine was the cause of the copper corrosion (2). Due to the medicinal applications of iodine, Courtois opened a new manufacturing plant to produce it by the reaction of algae with chlorine (3).

Today, iodine is prepared from the set of reactants (NO_3^- , I^- , H^+) (4), or (IO_3^- , I^- , H^+) (5).

4. Write equations for reactions 1–5.


1		
2		
3		
4		
5		

The solubility of iodine is very low in water but significantly increases when iodide ions are added. Together they form ions such as triiodide, I_3^- :

$$I^{-}(aq) + I_{2}(aq) \rightleftharpoons I_{3}^{-}(aq)$$
 (6)

Equilibrium (6) can be studied by the extraction of I_2 with dichloromethane. I^- and I_3^- do not dissolve in organic solvents but I_2 does and, when extracted, it is 15 times more concentrated in dichloromethane than in water.

The following experiment was performed. To prepare the initial solution, a few crystals of solid iodine were dissolved in 50.0 mL of an aqueous solution of potassium iodide (0.1112 g). 50.0 mL of dichloromethane was then added, and the mixture was vigorously shaken until equilibration. After phase separation, each phase was titrated the standard aqueous solution of sodium thiosulphate pentahydrate (14.9080 g in 1.000 L of solution) in the presence of starch. 16.20 mL was required for the organic phase and 8.00 mL for the aqueous phase. The process is schematically represented below:

Brown	Blue Pink	Dark Blue	Brown Dk purple	Dk Purple	CLess	Yellowish Pink	Yello- wish	CLess
а	h	C:	d	е	f	g	h	i

CLess = coulourless Dk = dark

5. Match the stages on the scheme (1–9) to the diagrams (a–i).

Stages	Picture
1	
2	
3	
4	
5	
6	
7	
8	
9	

6. <u>Write</u> equations for the two possible titration reactions in the aqueous phase involving iodine species and sodium thiosulphate.

7. <u>Calculate</u> the mass of iodine used to prepare the initial solution.

Calculate the mass of found used to prepare the initial solution.

8.	<u>Calculate</u> the equilibrium constant, K° , for reaction (6).	
		<i>K</i> ° =

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	12	Total
T5	Points	3	4	4	2	5	5	4	3	5	2	2	2	41
8%	Score													

Problem T5: Azobenzene – β -cyclodextrin complexes for the formation of nanomachines

Nanomachines are molecular assemblies that enable the transformation of an energy source into nano-movement for applications such as drug delivery. Numerous nanomachines make use of the isomerisation of azo compounds (R–N=N–R') upon irradiation.

1. <u>Draw</u> the stereoisomers of azobenzene ($H_5C_6-N=N-C_6H_5$) and <u>draw</u> a line between the two carbon atoms furthest apart in each compound. <u>Compare</u> the two distances (d_{trans} and d_{cis}).

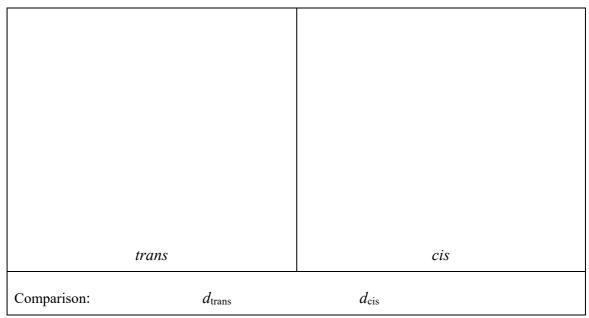


Fig. 1 – Possible reactants for the synthesis of M.

2. **M** can be synthesised in two steps from simple reactants (Fig. 1). Sodium nitrite (NaNO₂) in cold aqueous hydrochloric acid is used as the reagent for the first step of the synthesis. **Choose** from the suggested reactants (**N** to **Q**) the ones that can provide **M** with very high regioselectivity.

Reactants: and

Determination of the association constant K_t

 β -cyclodextrin (C, Fig. 2) is a cyclic heptamer of glucose, which can form inclusion complexes with azo compounds. In tasks 3 to 6, we will determine by spectroscopy the association constant, K_t , corresponding to the formation of the inclusion complex, CM_{trans} , as depicted in Fig. 2.

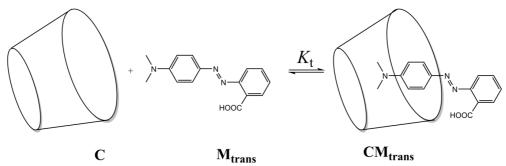


Fig. 2 – Formation of the CM_{trans} inclusion complex.

Solutions are prepared by mixing C and M_{trans} in different proportions to reach initial concentrations $[C]_0$ and $[M_{trans}]_0$. While $[M_{trans}]_0$ is identical for all solutions, $[C]_0$ varies. We measure the difference in absorbance, ΔA , between the absorbance of each solution and the pure M_{trans} solution, at a fixed wavelength. The molar absorption coefficients of CM_{trans} and M_{trans} are $\varepsilon_{CMtrans}$ and ε_{Mtrans} respectively. L is the path length of the beam through the sample. The absorbance of C (ε_{C}) is negligible.

3. Show that $\Delta A = \alpha$ [CM_{trans}] and express α in terms of the known constant(s).

Working:		
	o. —	
	$\alpha =$	

4.	Show that when C is in large excess with respect to $\mathbf{M_{trans}}$ (i.e. $[\mathbf{C}]_0 >> [\mathbf{M_{trans}}]_0$), the concentration of C may be considered as constant, $[\mathbf{C}] \simeq [\mathbf{C}]_0$.
W	orking:
5.	Show that, when C is in large excess with respect to $\mathbf{M}_{\text{trans}}$ (i.e. $[\mathbf{C}]_0 >> [\mathbf{M}_{\text{trans}}]_0$), $\Delta A = \alpha \frac{\beta[\mathbf{C}]_0}{1+K_t[\mathbf{C}]_0}$ and $\underline{\mathbf{express}} \beta$ in terms of the constant(s) and initial concentration(s).
W	rking:
1	
	eta=

6. **Determine** K_t using the following experimental curve (Fig. 3).

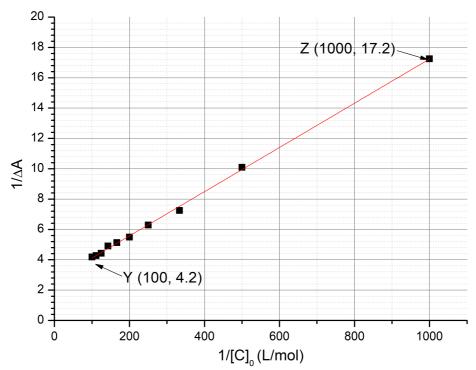


Fig. 3 – Evolution of $1/\Delta A$ as a function of $1/[C]_0$.

Working:	
	$K_{t} =$

Determination of the association constant, K_c

Tasks 7 to 9 allow the determination of the association constant, K_c , corresponding to the formation of CM_{cis} , the inclusion complex with M_{cis} ,

A pure sample of M_{trans} is irradiated, producing a known amount of M_{cis} , $[M_{cis}]_0$. M_{cis} (free or within the inclusion complex) then thermally isomerises into M_{trans} .

In the absence of C, the isomerisation follows first order kinetics with a rate constant, k_1 . All complexation equilibria are faster than the isomerisation processes.

The kinetic scheme corresponding to this experiment is provided in Fig. 4.

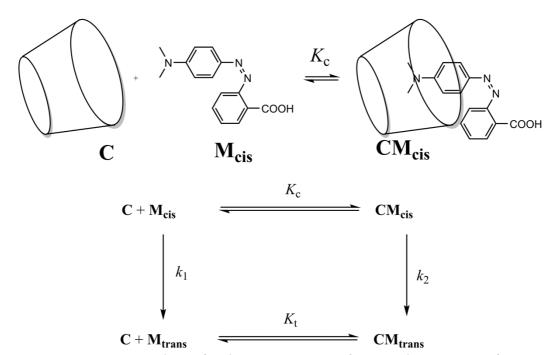


Fig. 4 – Kinetic scheme for the isomerisation of M_{cis} in the presence of C.

The rate of disappearance, r, of the total amount of \mathbf{M}_{cis} (free and complexed) is defined as

$$r = k_1[\mathbf{M_{cis}}] + k_2[\mathbf{CM_{cis}}]$$

Experimentally, r follows an apparent first order rate law with a rate constant k_{obs} :

$$r = k_{\text{obs}}([\mathbf{M_{cis}}] + [\mathbf{CM_{cis}}])$$

7. **Show** that $k_{\text{obs}} = \frac{\gamma + \delta k_2[C]}{1 + K_C[C]}$ and $\underline{\text{express}} \gamma$ and δ in terms of known constant(s).

	working:				
		$\gamma =$	and	δ =	
١					

8. Choose under which condition(s) the half-life, $t_{1/2}$, corresponding to k_{obs} can be expressed as

 $t_{1/2} = \frac{\ln 2}{\gamma} (1 + K_c[\mathbf{C}]_0)$ given that $[\mathbf{C}]_0 >> [\mathbf{M}_{cis}]_0$. Mathematically <u>justify</u> your answer.

 \square Very slow isomerisation of \mathbf{M}_{cis} within cyclodextrin

Very slow isomerisation of free M_{cis}

- ☐ CM_{cis} very stable
 - CM_{trans} very stable

Working:

9. Assuming the condition(s) in task 8 are satisfied, <u>calculate</u> K_c by a linear regression using the data below. You may use a calculator or plot a graph.

$[\mathbf{C}]_0 \text{ (mol } \mathbf{L}^{-1})$	$t_{1/2}$ (s)	$[\mathbf{C}]_0 \text{ (mol } \mathbf{L}^{-1})$	$t_{1/2}$ (s)
0	3.0	3.0×10^{-3}	5.9
1.0×10^{-4}	3.2	5.0×10^{-3}	7.7
5.0×10^{-4}	3.6	7.5×10^{-3}	9.9
1.0×10^{-3}	4.1	1.0×10^{-2}	12.6

uat	ioı	n (of	th	le i	lir	ne	ar	re	g	re	ssi	O	n:																		
																									ŀ	Kc	=	=				

Formation of nanomachines

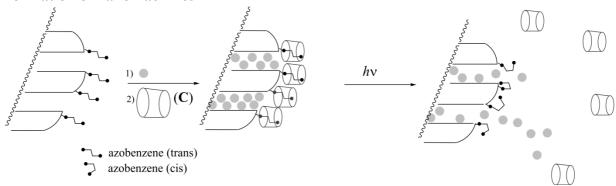


Fig. 5 – Cleavage of an azobenzene–cyclodextrin inclusion complex induced by a light-triggered isomerisation, which allows delivery of the drug (grey circles).

Another azobenzene compound (for which $K_c \ll K_t$) is initially in the *trans* form. This is covalently grafted onto silica (Fig. 5). The silica pores are filled with a dye (rhodamine B, shown as grey circles in Fig. 5). Upon addition of \mathbb{C} , an inclusion complex is formed, which blocks the pores and prevents the release of the dye.

10. <u>Tick</u> the most appropriate box (one choice only) for the necessary condition(s) so that the pores are initially blocked in the presence of **C** and the dye can be released upon irradiation.

$K_{t} \gg 1$
$K_{\rm t} >> 1$ and $K_{\rm c} << 1$
$K_{\rm t}$ / $K_{\rm c}$ << 1
$K_{\rm t} >> 1$ and $K_{\rm c} >> 1$
$K_{\rm c} \ll 1$

This azobenzene-silica powder loaded with a dye is placed in the corner of a cuvette (Fig. 6) so that the this powder cannot move into solution. The powder is irradiated at a wavelength λ_1 to trigger the release of the dye from the pores (Fig. 5). To monitor this release by absorbance spectroscopy we measure the absorbance of the solution at wavelength λ_2 .

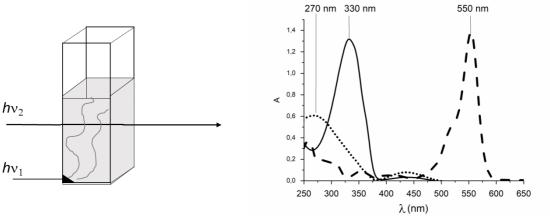


Fig. 6 – Left: experimental setup used to monitor the release of the dye; right: absorption spectra of trans-azobenzene (solid line), cis-azobenzene (dotted line) and rhodamine B (dashed line).

11. **Determine** λ_1 .

$\lambda_1 =$	nm

12. **Determine** λ_2 .

λ_2 =	nm

Problem	Question	1	2	3	4	5	6	7	8	9	Total
T6	Points	4	4	5	3	10	2	9	6	5	48
8%	Score										

Problem T6: Characterisation of a block-copolymer

Block-copolymers, obtained by linking different polymers (blocks), have unique properties, such as the ability to self-assemble. In this problem, the synthesis and characterisation of such macromolecules are studied.

Study of the first block

In this first part, we will study the water soluble homopolymer 1 (α -methoxy- ω -aminopolyethyleneglycol).

The ¹H NMR spectrum of 1 (DMSO- d_6 , 60 °C, 500 MHz) includes the following signals:

Index	δ (ppm)	Peak Area
a	2.7*	0.6
b	3.3	0.9
С	3.4	0.6
d	~ 3.5	133.7

Table 1, *in the presence of D_2O , the signal at 2.7 ppm disappears.

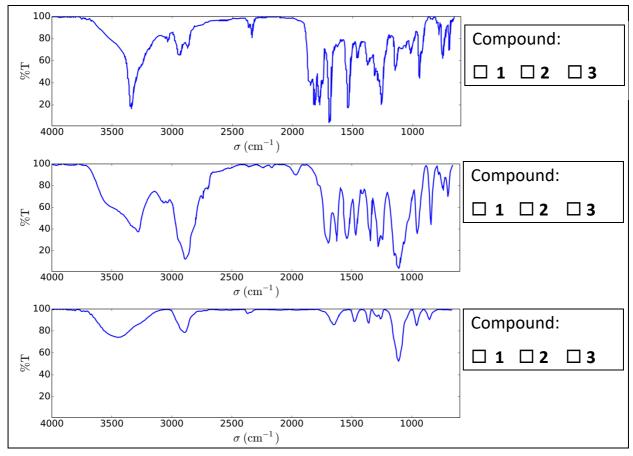
1. <u>Match</u> the ¹H NMR signals (a, b, c, d) from Table 1 with each of the corresponding protons.

2. Express the average degree of polymerization, n, as a function of the area, A_{OC2H4} , of the NMR peak of the repeating unit and the area, A_{OCH3} , of the NMR peak of the methyl end group. Calculate n.

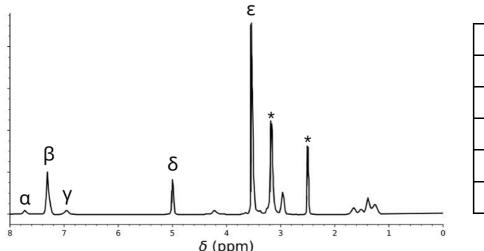
n =

If you could not calculate n, the value n = 100 can be used in the rest of the problem.

Study of a diblock-copolymer


The second block of the copolymer is synthesised by the reaction of 1 with 2 (ε -(benzyloxycarbonyl)-lysine N-carboxyanhydride). This yields block-copolymer 3.

$$O = \begin{pmatrix} H & & \\ &$$


3. <u>Draw</u> the reaction intermediate that is formed in the first step of the addition of 1 to 2. <u>Draw</u> the structure of G, a gas molecule formed in the second step of the mechanism.

G:

4. Infrared (IR) measurements were used to characterise the compounds. <u>Match</u> the three IR spectra with compounds 1, 2 and 3.

5. The ¹H NMR spectrum of copolymer **3** (in DMSO- d_6 , at 60 °C, 500 MHz) is reported in Fig. 1. Using some or all of the NMR signals, the areas of which are reported in Table 2, **calculate** its number average molar mass M_n , using your value of n from question 2. For your calculations, **draw** a circle around the group(s) of atoms you used and **give** their corresponding symbol(s) $(\alpha, \beta...)$.

~	(
Fig. 1 – signals marked with *	* correspond	to the solvent	and water.

1 Cak	Tirea
α	22.4
В	119
γ	23.8
δ	47.6
3	622

Table 2

 $M_{\rm n} = {
m kg mol^{-1}}$ Give your answer to two decimal places.

This reaction of 1 with 2 yielded the copolymers 3a after 20 h, 3b after 25 h and 3c after 30 h at 40 °C. Results of size-exclusion chromatography (SEC) experiments are presented in Fig. 2.

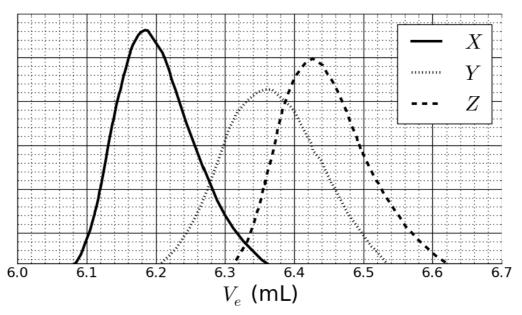


Fig. 2 – SEC chromatograms of 3a, 3b and 3c against the elution volume, V_e .

6. Match the signals in Fig. 2 with the copolymers 3a, 3b and 3c.

3a:	$\square X$	$\square Y$	$\square Z$	
3b:	$\square X$	$\square Y$	$\square Z$	
3c:	$\square X$	$\square Y$	$\square Z$	

In order to calibrate the chromatogram, a mixture of standard polymers of known masses (3, 30, 130, 700 and 7000 kg mol⁻¹) has been studied (Fig. 3).

The log value of the molar mass is a linear function of the elution volume, V_{e} .

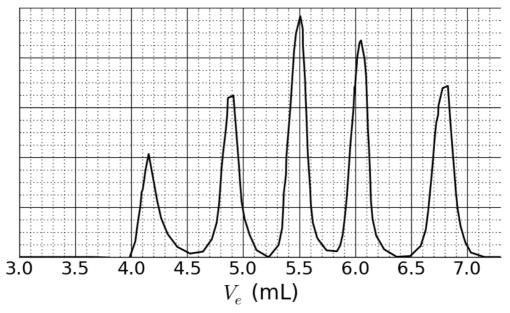


Fig. 3 – SEC chromatogram of the mixture of standards.

7. Based on the SEC curves in Fig. 2 and 3, <u>determine</u> V_e of the polymer that corresponds to curve X and use it to <u>estimate</u> the degree of polymerization, m, of its second block. <u>Show</u> your calculation; you may use a calculator or plot a graph.

=		mL										
	111111											

Triblock copolymer synthesis

For biological applications, involving the formation of micelles, a triblock copolymer 9 can be synthesised through the introduction of a middle block, **B**, using monomer 5.

6
$$\xrightarrow{\text{MsCI/NEt}_3}$$
 $\xrightarrow{\text{NaN}_3}$ $\xrightarrow{\text{Pd/C}, H_2}$ 7 $\xrightarrow{m 2}$ 8 $+$ $m G$

8. **Draw** the structures of **5**, **7** and **8**.

5 (no other products than 6:A-B are obtained)

7 (a gas is formed in the final step)

8

9. Amphiphilic block copolymers, such as **9: A-B-C**, can be used for medical applications, as they self-assemble into micelles in water (pH = 7), which can be used as drug carriers. **Assign** each block of the copolymer to a property. **Draw** a scheme of the micelle with only 4 polymer chains.

A: B: C:	☐ hydrophobic☐ hydrophobic☐ hydrophobic	☐ hydrophilic☐ hydrophilic☐ hydrophilic	
	A \	В —	C
4	A		
m	*		
	WM -		
	VVVI		

Problem T7: Ring motion in a [2]catenane

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	Total
T7	Points	4	12	2	2	2	5	5	8	4	5	5	54
6%	Score												

In 2016, the Nobel Prize in Chemistry was awarded to J.-P. Sauvage, Sir J. F. Stoddart (a Brit!) and B. L. Feringa "for the design and synthesis of molecular machines". An example of these is [2]catenane, a molecule consisting of two interlocked rings. In this system, one macrocycle contains a single phenanthroline (bidentate) ligand and the second contains two ligands: a phenanthroline and a terpyridine (tridentate) ligand. A copper ion is coordinated by one ligand from each macrocycle. Depending on the oxidation state of the copper (+I or +II), two configurations are obtained (Fig. 1).

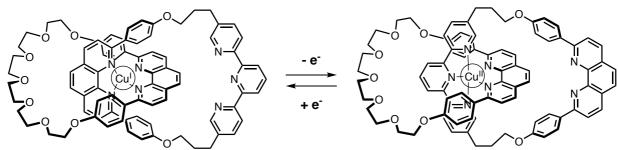


Fig. 1 – Multi-stability of a ring in a [2]catenane.

The synthesis of the macrocycle is the following:

1.	<u>Draw</u> the structure of B .
В	
2.	<u>Draw</u> the structures of E, F and G.
E	
F	
G	
_	
3.	From the following the reaction conditions, choose which one(s) can produce E from D :
	H^+, H_2O
	OH ⁻ , H ₂ O
	NaBH ₄ , CH ₃ OH H ₂ , Pd/C, THF
	112,1 w 0, 1111
4.	In this synthesis, MsCl is used to obtain:
	a leaving group
	a protecting group
	a deactivating group a directing group
111	a directing group

5. **G** is obtained by the reaction between **F** and LiBr in acetone. This reaction is:

☐ electrophilic aromatic substitution	
□ nucleophilic aromatic substitution	
\square S _N 1	
\square S _N 2	

6. <u>Draw</u> the transition state of the rate-determining step of the reaction $\mathbf{F} \to \mathbf{G}$, showing the 3D geometry. Depict only one reaction centre. The main carbon chain can be represented as an R group.

Transition state:		

The synthesis of [2] catenane ${\bf L}$ uses the template effect of a copper complex:

7. Write the full electronic configuration of Cu(0) in its ground state. Give the oxidation state of Cu in complex J and write the electronic configuration of Cu in the free ion corresponding to J. Electronic configuration of Cu(0): Oxidation state of Cu in J: Electronic configuration of Cu in J: Select the geometry of the copper ion in L. Assuming an ideal geometry of the ligands around the copper centre, draw an energy level diagram showing the behavior of the d orbitals in the crystal field. Fill the orbital diagram. Give the maximum value of the spin (S) for this complex. The geometry of Cu in L is: ☐ Octahedral ☐ Tetrahedral ☐ Square planar ☐ Trigonal bipyramid Splitting and filling of d orbitals: S =9. From the following compounds, **choose** the one(s) that can remove the copper ion in L to obtain the free [2]catenane: NH_2 ☐ CH₃CN □ NH₄PF₆ \square KCN NH₂ H_2N □ tren tren

In [2]catenane L, the copper ion can exist in two oxidation states (+I) or (+II), each exhibiting a different coordination sphere (tetra- or penta-coordinated, respectively).

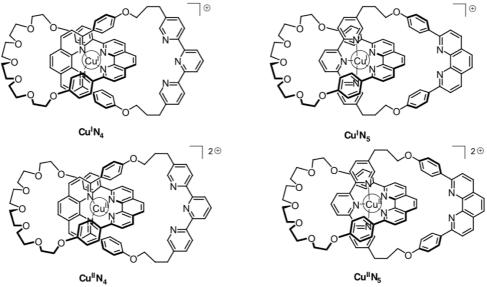
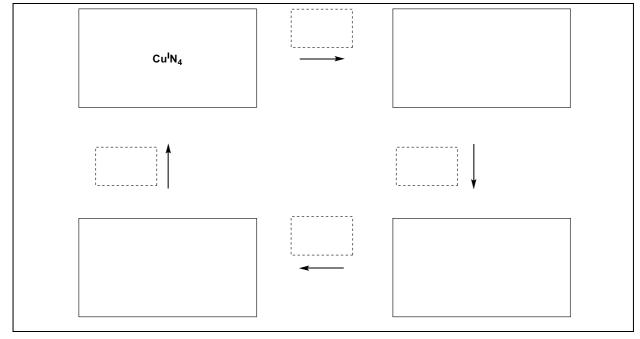


Fig. 2 - [2] catenane L states


The stability of Cu(I) complexes can be inferred by comparing their electronic structures to that of a noble gas.

10. Fill in the blanks with a number or a tick:

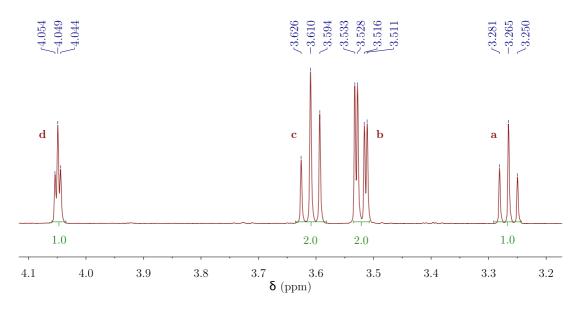
The Cu^IN_4 complex has ... electrons in the coordination sphere of the metal. The Cu^IN_5 complex has ... electrons in the coordination sphere of the metal. The Cu^IN_4 complex is \square more / \square less stable than the Cu^IN_5 complex.

11. <u>Fill</u> in the solid boxes with the labels for the complexes in Fig. 2 and <u>complete</u> the sequence to achieve electrochemical control of the system using the following notation for the dashed

boxes: \bigcirc (a rotation); $+e^-$; $-e^-$.

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
T8	Points	2	6	2	2	11	2	4	3	4	2	6	8	2	6	4	64
6%	Score																

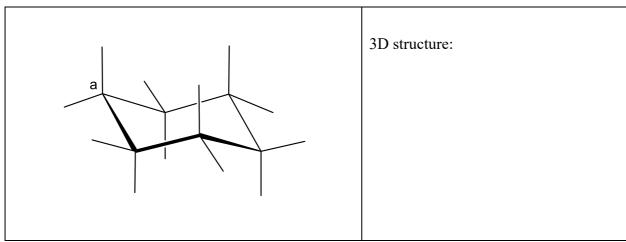
Problem T8: Identification and synthesis of inositols


In this problem, we define "3D structure" and "perspective formula" as indicated for β -glucose in the following figure.

Inositols are cyclohexane-1,2,3,4,5,6-hexols. Some of these 6-membered carbocycles, in particular *myo*-inositol, are involved in a number of biological processes.

Structure of myo-inositol

1.	<u>Draw</u> the structural formula of inositols, without stereochemical details.
Thi	s group of molecules contains 9 stereoisomers, including enantiomers.
Thi	s group of molecules contains 9 stereoisomers, including enantiomers. Draw the 3D structures of all optically active stereoisomers.


The structure of a specific inositol, called *myo*-inositol, is studied here. Only one of its chair conformers is predominant and its structure can be deduced from its ¹H NMR spectrum. The spectrum below was obtained at 600 MHz in D₂O. No other signal from that compound was observed in the spectrum. The integration is indicated on the spectrum below each signal.

3. <u>State</u> the molecular formula of the predominant compound derived from *myo*-inositol in this sample that is consistent with the number of protons observed in the ¹H NMR spectrum.

4. Based on the number and integrations of the proton signals, **state** the number of symmetry plane(s) in this molecule.

5. <u>Complete</u> the perspective drawing of the most stable conformation of *myo*-inositol. Then <u>label</u> each hydrogen with the corresponding letter (a, b, c or d) according to the NMR spectrum above. Proton a must be on carbon a. <u>Draw</u> its 3D structure.

Synthesis of inositols

For medicinal applications, it is useful to synthesise some inositol phosphates on a large scale. We will study the synthesis of inositol 2 from bromodiol 1.

6. Choose the correct relationship(s) between 2 and 3.

Inositol 2 can be obtained from compound 1 in 7 steps.

7.	<u>Draw</u> the 3D structure of 4.
4	
8.	The reaction leading to 5 occurs on the double bond with the highest electron density. Consider the structure of 1-bromo-1,3-cyclohexadiene, which is a substructure of 4 . <u>Circle</u> the double bond with the highest electron density. <u>Represent</u> all the electronic effects due to the bromine on separate diagrams.
	Br
9.	<u>Draw</u> the 3D structure of the major diastereomer 5.
5	
10.	<u>State</u> the total number of stereoisomers of 5 possibly obtained in this synthesis, starting from the enantiopure compound 1.

produced. $\underline{\mathbf{Draw}}$ the 3D structures	es of 6 and 6 '.
6	6'
12. <u>Draw</u> the 3D structures of major	diastereomers 8 and 9.
8	9
13. Select the most appropriate condi	itions A to obtain 2 .
☐ H ₂ , Pd/C	
\square K ₂ CO ₃ , HF \square HCOOH, H ₂ O	
\square BF ₃ ·OEt ₂	

14. If the bromine is not present in compound 1, in addition to 2, another stereoisomer would be obtained. Considering the stereoselectivity of the reactions remains unchanged and that the following steps involve the same number of equivalents as for 2, <u>draw</u> the 3D structure of this stereoisomer and <u>give</u> its relationship with 2.	at
□ enantiomers	
 □ epimers □ diastereoisomers □ atropoisomers 	
15. During the synthesis of 2 from 1 , choose the removal step(s) of <u>protecting</u> or <u>directing</u> groups.	g
$ \begin{array}{c} \square & 1 \to 4 \\ \square & 4 \to 5 \end{array} $	
$\begin{array}{c} \square & 4 \rightarrow 5 \\ \square & 5 \rightarrow 6 \end{array}$	
$\square \stackrel{\circ}{1} \stackrel{\circ}{0} $	
\square $7 \rightarrow 8$	
\square 8 \rightarrow 9	
\square 9 \rightarrow 2	

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	12	13	Total
Т9	Points	2	2	4	3	2	17	1	1	2	4	2	2	2	44
7%	Score														

Problem T9: Synthesis of levobupivacaine

Part I.

The local anesthetic bupivacaine (marketed as Marcaine) is on the World Health Organization List of Essential Medicines. Although the drug is currently used as a racemic mixture, one enantiomer of bupivacaine, levobupivacaine, is less cardiotoxic and, therefore, safer than the racemate. Levobupivacaine can be synthesised from the natural amino acid L-lysine.

$$CI^ H_3N$$
 O

L-Lysine hydrochloride

1. <u>Assign</u> the absolute configuration of the stereogenic centre in L-lysine hydrochloride and <u>justify</u> your answer by classifying the substituents in order of their priority.

Configuration:	Priority 1 > 2 > 3 > 4:
$\square R$	$NH_3^+CI^ NH_3^+$ $COO^ H$

- 2. The prefix L in L-lysine refers to relative configuration. **Choose** all correct statements:
- ☐ All natural L-amino acids are levorotatory.
- ☐ Natural L-amino acids can be levorotatory or dextrorotatory.
- \square All natural L-amino acids are (S).
- \square All natural L-amino acids are (R).

Often, we want only one of the amino groups in L-lysine to react. A Cu^{2+} salt with excess aqueous hydroxide can selectively mask the reactivity of one of the amino groups. After the complex is formed, only the non-complexed NH_2 group is available to react.

3. Considering that L-lysine acts as a bidentate ligand and that two L-lysines coordinate to one Cu^{2+} ion in the presence of aqueous hydroxide, <u>draw</u> the structure of the intermediate complex.

Complex

Fortunately, in the synthesis of levobupivacaine shown below, the same amino group reacts even without the Cu^{2+} salt.

$$\begin{array}{c} \text{CI} & \text{NH}_3 \\ \text{H}_3 \\ \text{N} & \text{L-Lysine} \\ \text{hydrochloride} \\ \end{array} \begin{array}{c} \text{NaOAc} & \text{C} \\ \text{AcOH} & \text{C}_{16} \\ \text{H}_{21} \\ \text{NO}_6 \\ \end{array} \begin{array}{c} \text{D} \\ \text{DCC} \\ \end{array} \begin{array}{c} \text{1) NaOH, Cbz-Cl} \\ \text{2) diluted HCl} \\ \text{3) aqueous buffer} \\ \text{pH 6.2} \\ \end{array} \begin{array}{c} \text{C}_{14} \\ \text{H}_{20} \\ \text{N}_2 \\ \text{O}_4 \\ \end{array} \\ \begin{array}{c} \text{C}_{14} \\ \text{H}_{20} \\ \text{N}_2 \\ \text{O}_4 \\ \end{array} \begin{array}{c} \text{E} \\ \text{C}_{29} \\ \text{H}_{34} \\ \text{N}_2 \\ \text{O}_6 \\ \end{array} \\ \begin{array}{c} \text{C}_{29} \\ \text{H}_{34} \\ \text{N}_2 \\ \text{O}_6 \\ \end{array} \\ \begin{array}{c} \text{E} \\ \text{C}_{29} \\ \text{H}_{34} \\ \text{N}_2 \\ \text{O}_6 \\ \end{array} \\ \begin{array}{c} \text{C}_{18} \\ \text{H}_{28} \\ \text{N}_2 \\ \text{O}_6 \\ \end{array} \begin{array}{c} \text{C}_{18} \\ \text{H}_{28} \\ \text{N}_2 \\ \text{O}_6 \\ \end{array} \\ \begin{array}{c} \text{C}_{18} \\ \text{C}_{1$$

(benzyloxycarbonyl chloride) (N,N'-dicyclohexylcarbodiimide) (p-toluenesulfonyl chloride) From this point on, you can use the abbreviations proposed in the scheme above.

4. **Draw** the structure of compound **A**, including the appropriate stereochemistry.

A		

5. The transformation of L-lysine into **A** is (select the correct answer(s)):

	an enantioselective reaction.
	an enantiospecific reaction.
	a regioselective reaction.

6.	<u>Draw</u> the structures of compounds B – F , in	cluding the appropriate stereochemistry.	
В	$C_{14}H_{20}N_2O_4$	C C ₁₆ H ₂₁ NO ₆	
D		E C ₂₉ H ₃₄ N ₂ O ₆ S	
F	$C_{21}H_{28}N_2O_4S$		
	What is the role of DCC in the transformation	$\operatorname{lon} \mathbf{C} \to \mathbf{D}$?	
	Protecting group for the hydroxy group.		
8.	TsCl is used in the synthesis to enable:		
	Nucleophilic substitution of an amino group. Electrophilic substitution of an amino group. Nucleophilic substitution of a hydroxy group. Electrophilic substitution of a hydroxy group.		

9. <u>Select</u> all possible reagents which could be used as reagent H:		
☐ diluted HCl	□ Zn/HCl	
\square K ₂ CO ₃	\square H ₂ SO ₄	
☐ diluted KMnO ₄	☐ diluted NaOH	
□ SOCl ₂	□ PCl ₅	
10. <u>Draw</u> the structure of levobupivacaine, inclu	ading the appropriate stereochemistry.	
Levobupivacaine C ₁₈ H ₂₈ N ₂ O		
Part II. The synthesis of levobupivacaine requires the use of enantiomerically pure L-lysine. A common method to confirm the enantiomeric purity of amino acids is their transformation into amides using Mosher's acid (see the structure of the (S) isomer below).		
~0 (:Fa	
HO (S)	71 3	
(S)		
0		
(S)-Moshe	r's acid	
11. <u>Draw</u> the structure of the amide formed who (S)-Mosher's acid. Clearly show the stereoche	-	

12. <u>How many products</u> will be formed from racemic lysine and (<i>S</i>)-Mosher's acid (consider that only the α-amino group of lysine reacts)?
☐ Two diastereoisomers.
☐ Four diastereoisomers.
☐ A racemic mixture of two enantiomers.
☐ Four compounds: two enantiomers and two diastereoisomers.
13. <u>Select</u> the method(s) which can be used to quantitatively determine the enantiomeric purit of lysine after its reaction with (<i>S</i>)-Mosher's acid:
□ NMR spectroscopy.
☐ Liquid chromatography.
☐ Mass spectrometry.
☐ UV-vis spectroscopy.