THEORETICAL EXAM

51st — International Chemistry Olympiad France — Paris — 2019

Making science together!

2019-07-26

MINISTÈRE DE L'ÉDUCATION NATIONALE ET DE LA JEUNESSE

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE ET DE L'INNOVATION

General instructions

- This theoretical exam booklet contains 61 pages.
- You may begin writing as soon as the Start command is given.
- You have 5 hours to complete the exam.
- All results and answers must be clearly written in pen in their respective areas on the exam papers. Answers written outside the answer boxes will not be graded.
- If you need scratch paper, use the backside of the exam sheets. Remember that nothing outside the designated areas will be graded.
- Use only the pen and calculator provided.
- The official English version of the exam booklet is available upon request and serves for clarification only.
- If you need to leave the exam room (to use the toilet or have a snack), wave the corresponding IChO card. An exam supervisor will come to accompany you.
- For multiple-choice questions: if you want to change your answer, fill the answer box completely and then make a new empty answer box next to it.
- The supervisor will announce a 30-minute warning before the Stop command.
- You must stop your work immediately when the Stop command is announced. Failure to stop writing by ½ minute or longer will lead to nullification of your theoretical exam.
- After the Stop command has been given, place your exam booklet back in your exam envelope, and wait at your seat. The exam supervisor will come to seal the envelope in front of you and collect it.

GOOD LUCK!

Table of Contents

This theoretical exam is composed of 9 independent problems, as follows. Their relative weight is indicated in parenthesis.

Problem T1: Infinite well and butadiene	(6%)	p. 8
Problem T2: Hydrogen production by water-splitting	(7%)	p. 13
Problem T3: About silver chloride	(5%)	p. 19
Problem T4: From black powder to the discovery of iodine	(7%)	p. 24
Problem T5: Complexes for the formation of nanomachines	(8%)	p. 30
Problem T6: Characterization of a block-copolymer	(8%)	p. 39
Problem T7: Ring motion in a [2]catenane	(6%)	p. 47
Problem T8: Identification and synthesis of inositols	(6%)	p. 52
Problem T9: Synthesis of levobupivacaine	(7%)	p. 57

Physical constants and equations

In these tasks, we assume the activities of all aqueous species to be well approximated by their respective concentration in mol L^{-1} . To further simplify formulas and expressions, the standard concentration $c^{\circ} = 1 \text{ mol } L^{-1}$ is omitted.

Avogadro's constant:

Universal gas constant:

Standard pressure:

Atmospheric pressure:

Zero of the Celsius scale:

Faraday constant:

Watt:

Kilowatt hour:

Planck constant:

Speed of light in vacuum:

Elementary charge:

Electron-volt

Electrical power:

Power efficiency:

Planck-Einstein relation:

Ideal gas equation:

Gibbs free energy:

Reaction quotient *Q* for a reaction a A(aq) + b B(aq) = c C(aq) + d D(aq):

Henderson-Hasselbalch equation:

Nernst–Peterson equation:

where *Q* is the reaction quotient of

the reduction half-reaction

Beer-Lambert law:

Rate laws in integrated form:

- Zero order:
- First order:
- Second order:

Half-life for a first order process:

Number average molar mass M_n :

Mass average molar mass M_w :

Polydispersity index I_p :

$$N_{\rm A} = 6.022 \cdot 10^{23} \text{ mol}^{-1}$$

 $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

$$p^{\circ} = 1 \text{ bar} = 10^{5} \text{ Pa}$$

$$P_{\text{atm}} = 1 \text{ atm} = 1.013 \text{ bar} = 1.013 \cdot 10^5 \text{ Pa}$$

$$F = 9.6485 \cdot 10^4 \text{ C mol}^{-1}$$

$$1 \text{ W} = 1 \text{ J s}^{-1}$$

$$1 \text{ kWh} = 3.6 \cdot 10^6 \text{ J}$$

$$h = 6.6261 \cdot 10^{-34} \text{ J s}$$

$$c = 2.998 \cdot 10^8 \text{ m s}^{-1}$$

$$e = 1.6022 \cdot 10^{-19} \text{ C}$$

$$1 \text{ eV} = 1.6022 \cdot 10^{-19} \text{ J}$$

$$P = \Delta E \times I$$

$$\eta = P_{\text{obtained}}/P_{\text{applied}}$$

$$E = hc/\lambda = h \nu$$

$$pV = nRT$$

$$G = H - TS$$

$$\Delta_{\rm r}G^{\circ} = -RT\ln K^{\circ}$$

$$\Delta_{\rm r}G^{\circ} = -n F E_{\rm cell}^{\circ}$$

$$\Delta_{\rm r}G = \Delta_{\rm r}G^{\rm o} + RT \ln Q$$

$$Q = \frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}$$

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$
$$pH = pK_{a} + \log \frac{[A^{-}]}{[AH]}$$

$$E = E^{o} - \frac{RT}{2F} \ln Q$$

at
$$T = 298 \text{ K}, \frac{RT}{F} \ln 10 \approx 0.059 \text{ V}$$

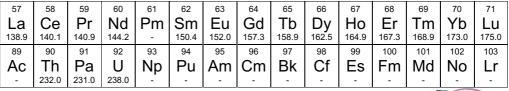
$$A = \varepsilon lc$$

$$[\mathbf{A}] = [\mathbf{A}]_0 - kt$$

$$\ln[A] = \ln[A]_0 - kt$$

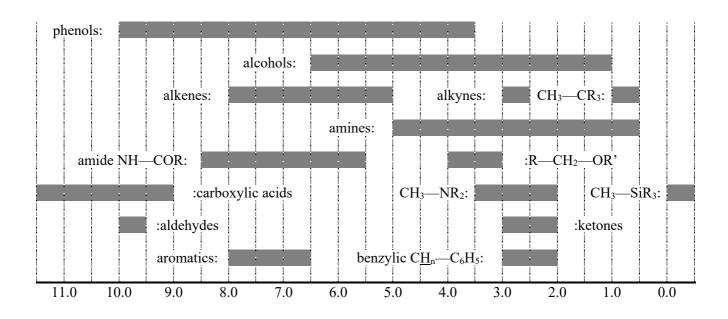
$$1/[A] = 1/[A]_0 + kt$$

$$\frac{\ln 2}{L}$$


$$M_{\rm n} = \frac{\sum_{\rm i} N_{\rm i} M_{\rm i}}{\sum_{\rm i} N_{\rm i}}$$

$$M_{\rm n} = \frac{\sum_{\rm i} N_{\rm i} M_{\rm i}}{\sum_{\rm i} N_{\rm i}}$$
$$M_{\rm w} = \frac{\sum_{\rm i} N_{\rm i} M_{\rm i}^2}{\sum_{\rm i} N_{\rm i} M_{\rm i}}$$

$$I_{\rm p} = \frac{M_{\rm w}}{M_{\rm p}}$$


Periodic table

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3	4											5	6	7	8	9	10
Li 6.94	Be 9.01											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	CI	Ar
22.99 19	24.31	21	22	23	24	25	26	27	28	29	30	26.98	28.09 32	30.97	32.06 34	35.45 35	39.95 36
K	Ca	Sc	Ti	V	Ĉ۲	Mn	Fe	Co	Ni	Cu	Zn	Ğa	Ğe	As	Se	Br	Kr
39.10	40.08	44.96	47.87	v 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.95	Tc -	Ru 101.1	Rh 102.9	Pd 106.4	Ag	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	 126.9	Xe 131.3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57-71	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	-	-	-
87	88	89-	104 D£	105	106	107 DJ-	108	109	110	111	112	113 N.I	114	115	116	117	118
Fr	Ra	103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

¹H NMR
Chemical shifts of hydrogen (in ppm / TMS)

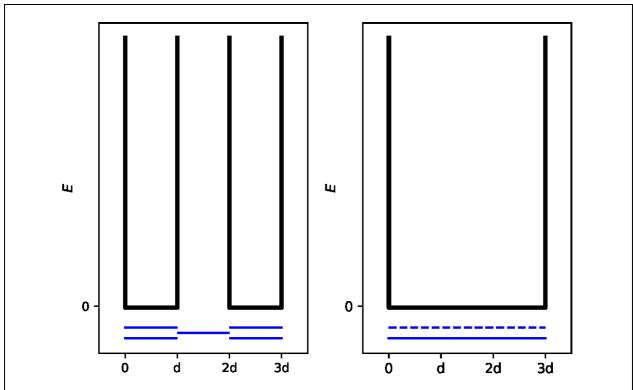
H-H coupling constants (in Hz)

Hydrogen type	$ J_{ab} $ (Hz)
$R_2CH_aH_b$	4-20
R ₂ H _a C—CR ₂ H _b	2-12 if free rotation: 6-8 ax-ax (cyclohexane): 8-12 ax-eq or eq-eq (cyclohexane): 2-5
R ₂ H _a C—CR ₂ —CR ₂ H _b	if free rotation: < 0.1 otherwise (rigid): 1-8
RH _a C=CRH _b	cis: 7-12 trans: 12-18
R ₂ C=CH _a H _b	0.5-3
H _a (CO)—CR ₂ H _b	1-3
RH _a C=CR—CR ₂ H _b	0.5-2.5

eq = equatorial, ax = axial

IR spectroscopy table

Vibrational mode	σ (cm ⁻¹)	Intensity
alcohol O—H (stretching)	3600-3200	strong
carboxylic acid O—H (stretching)	3600-2500	strong
N—H (stretching)	3500-3350	strong
≡C—H (stretching)	3300	strong
=C—H (stretching)	3100-3000	weak
C—H (stretching)	2950-2840	weak
–(CO)—H (stretching)	2900-2800	weak
C≡N (stretching)	2250	strong
C≡C (stretching)	2260-2100	variable
aldehyde C=O (stretching)	1740-1720	strong
anhydride C=O (stretching)	1840-1800; 1780-1740	weak; strong
ester C=O (stretching)	1750-1720	strong
ketone C=O (stretching)	1745-1715	strong
amide C=O (stretching)	1700-1500	strong
alkene C=C (stretching)	1680-1600	weak
aromatic C=C (stretching)	1600-1400	weak
CH ₂ (bending)	1480-1440	medium
CH ₃ (bending)	1465-1440; 1390-1365	medium
C—O—C (stretching)	1250-1050	strong
C—OH (stretching)	1200-1020	strong
NO ₂ (stretching)	1600-1500; 1400-1300	strong
1.02 (5	1000-1300, 1400-1300	suong


Problem	Question	1	2	3	4	5	6	7	8	9	10	11	Total
T1	Points	3	4	4	2	3	2	2	4.5	2.5	3	3	33
6%	Score												

Problem T1: Infinite well and butadiene

The buta-1,3-diene molecule is often written CH_2 =CH-CH= CH_2 , with alternating single and double bonds. Nevertheless, its chemical reactivity is not consistent with this description and the π electrons are better described by a distribution along the three bonds:

This system can be modeled as a 1D box (*i.e.* infinite potential well) where the electrons are free. The energy of an electron in an infinite well of length L is: $E_n = \frac{n^2 h^2}{8m_e L^2}$, where n is a **non-zero** positive integer.

1. Two different models are studied. <u>Sketch</u> at least the three lowest-energy levels E_n <u>for each</u> <u>model</u> in the respective diagrams, showing how the relative energy levels differ within and between models.

Model 1 (« localized »): The π electrons are localized in isolated bonds and reside in two separate infinite potential wells of length d.

Model 2 (« delocalized »): The π electrons are delocalized in the whole molecule and reside in a single infinite potential well of length 3d.

2. Place the π electrons for model 1 in the previous diagram and express the total energy of the π system in model 1, as a function of h, m_e and d.

$$E(1) =$$

3. Place the π electrons for model 2 in the previous diagram and express the total energy of the π system in model 2, as a function of h, m_e and d.

$$E(2) =$$

The conjugation energy is the total energy of the conjugated π system minus the sum of the energies of ethylene molecules with the same number of electrons.

4. Express the conjugation energy ΔE_c of butadiene, as a function of h, m_e and d.

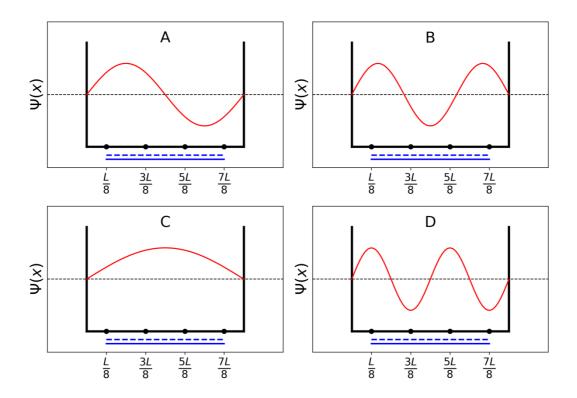
$$\Delta E_{\rm c} =$$

Models 1 and 2 are too simplistic. A new model will be detailed in the following:

5. **Draw** three other resonance structures of butadiene using Lewis notations.

To take into account the size of carbon atoms, model 2 was modified into model 3, as follows:

- the new length of the well is L and is located between the abscissa 0 and L;
- the carbon atoms are located at the abscissas L/8; 3L/8; 5L/8 and 7L/8.


For each level n, the π wavefunction is:

$$\psi_{\rm n}(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

and the π electron density for a system with $N\pi$ electrons is:

$$\rho(x) = 2 \sum_{i=1}^{N/2} |\psi_i(x)|^2$$

The four π wavefunctions, which correspond to the molecular orbitals of the π system, are depicted below (arbitrary order).

6. **Rank** the energies of the four π wavefunctions (E_A , E_B , E_C and E_D).

< < <

7. <u>Identify</u> the labels (A, B, C or D) of the orbitals that are filled with electrons in butadiene.

8. According to model 3, <u>determine</u> the values of the π wavefunctions ψ_n for occupied levels at positions 0, L/4 and L/2, for n=1 and n=2, as a function of L.

 $\psi_1(0) =$

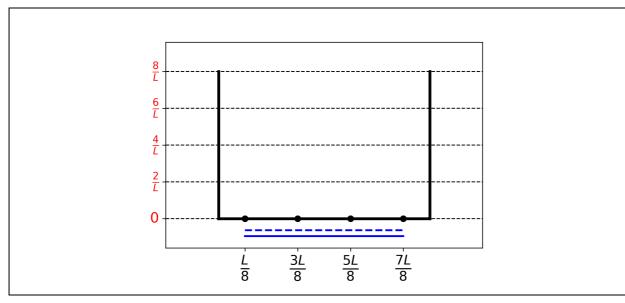
 $\psi_1\left(\frac{L}{4}\right) =$

 $\psi_1\left(\frac{L}{2}\right) =$

 $\psi_2(0) =$

 $\psi_2\left(\frac{L}{4}\right) =$

 $\psi_2\left(\frac{L}{2}\right) =$


9. According to model 3, <u>determine</u> the values of the π electron density at positions 0, L/4 and L/2.

$$\rho(0) =$$

$$\rho\left(\frac{L}{4}\right) =$$

$$\rho\left(\frac{L}{2}\right) =$$

10. **Draw** the π electron density between 0 and L.

- 11. <u>Rank</u> the following CC bond lengths (B1, B2, ..., B5) from shortest to longest, using the symbols = or < .
 - B1: C1C2 in the butadiene molecule
 - B2: C2C3 in the butadiene molecule
 - B3: C3C4 in the butadiene molecule
 - B4: CC in the ethane molecule
 - B5: CC in the ethene molecule

Problem	Question	1	2	3	4	5	6	7	8	9	10	Total
T2	Points	1	4	2	3	3	6	4	1	8	2	34
7%	Score											

Problem T2: Hydrogen production by water-splitting

Data:

Compound	$H_2(g)$	H ₂ O(1)	H ₂ O(g)	O ₂ (g)
$\Delta_{\rm f} H^{\circ} ({\rm kJ~mol}^{-1})$	0	-285.8	-241.8	0
$S_{\mathrm{m}}^{\circ} (\mathrm{J} \; \mathrm{mol}^{-1} \mathrm{K}^{-1})$	130.6	69.9	188.7	205.2

Molecular hydrogen (H₂) can be used as an alternative to carbon dioxide-emitting fuels. Hence, lowering the cost and the environmental impact of its production is a major challenge. In this field, water-splitting is a promising candidate technology.

1.	<u>Write</u> the balanced equation of the liquid water splitting reaction <u>using a stoichiometric</u> <u>coefficient of 1 for water</u> .
2.	Using only the thermodynamic data provided above, <u>justify numerically</u> whether this reaction is thermodynamically favorable at 298 K.
Ca	lculations:
Re	eaction thermodynamically favorable?
	□ Yes □ No

Water splitting can be performed electrochemically using two electrodes in an acidic water bath, connected to a power supply (Fig. 1). Gas bubbles are formed at both electrodes.

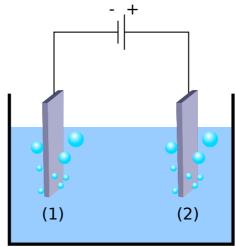


Fig. 1 – Water-splitting electrochemical cell.

3. Write the balanced net electrochemical half reactions occurring at each electrode.

On electrode (1):		
On electrode (2):		

4. Using only the thermodynamic data provided above (or question 2), <u>calculate</u> (to three decimal places) ΔE_{th} necessary for the process. <u>Check</u> the appropriate box for the correct condition such that the reaction will be thermodynamically favorable at 298 K when all reactants and products are in their standard states.

1	
Calculation:	
	$\Delta E_{\text{th}} = \underline{\hspace{1cm}} V$ (give the result with 3 decimal places)
$\Box \Delta E_{\text{applied}} = \Delta E_{\text{th}}$	
\Box $\Delta E_{\text{applied}} > \Delta E_{\text{th}}$	
\square $\Delta E_{\text{applied}} < \Delta E_{\text{th}}$	
	If you could not calculate ΔE_{th} , the value 1.200 V
	can be used in the rest of the problem.

Experimentally, a higher voltage is needed to split water. For a given Pt cathode, the minimum voltage necessary to observe water splitting, ΔE_{\min} , depends on the nature of the anode as displayed in the table below:

Anode	ΔE_{\min} (V)
IrO_x	1.6
NiO_x	1.7
CoO_x	1.7
Fe_2O_3	1.9

The difference between ΔE_{\min} and ΔE_{th} is the "loss" in the device.

5. Give the expression of the device power efficiency η_{elec} (fraction of the power used for water splitting) as a function of ΔE_{th} and ΔE_{min} . Assuming an identical current value I, calculate the water electrolysis power efficiency when a Pt cathode and a Fe₂O₃ anode are used. Select the most efficient anode from the table above.

 $\eta_{
m elec} =$

Power efficiency when a Pt and a Fe₂O₃ electrodes are used:

 $\eta_{
m elec}$ = %

Most efficient anode:

If you could not calculate η_{elec} , the value $\eta_{elec} = 75\%$ can be used in the rest of the problem.

An alternative to water electrolysis is direct photocatalytic water-splitting. It uses a semiconductor that can be activated by absorbing light.

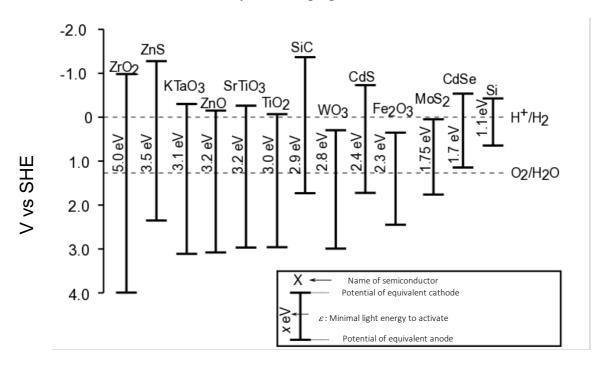


Fig. 2 – Activation conditions and equivalent electrode potentials of different semiconductors.

Dashed lines correspond to water oxidation and reduction potentials. SHE = Standard

Hydrogen Electrode

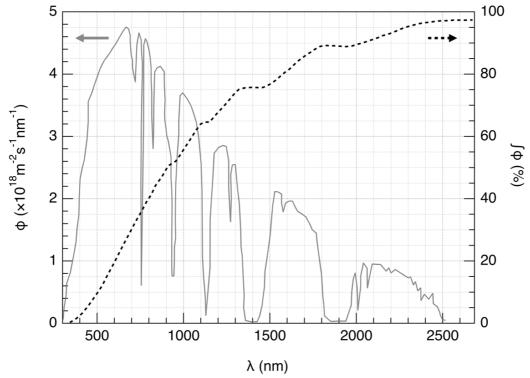


Fig. 3 – Left axis: Spectral distribution of the solar photon flux ϕ . The photon flux is the number of photons per unit area per unit time arriving on the semiconductor. Right axis and dashed line: cumulative photon flux (i.e. fraction of the photon flux with smaller wavelength).

6.	Estimate the fraction of semiconductors: TiO ₂ , CdS computation.					
Ex	planation / calculation:					
			Approximate fraction			
		TiO ₂	9/0)		
		CdS	%			
		Si	9/6			
	e activation of the semi-cond can be seen as two electrodes	of differ	ent potentials.		-	
7.	Using the data in Fig 2, <u>ch</u> activated, can be used as the					ice
	ZrO_2 \Box ZnO		☐ TiO ₂		□ WO ₃	
($\Box \text{GdS} \qquad \Box \text{Fe}_2\text{O}_3$		☐ CdSe		□ Si	
8.	<u>Give</u> the semiconductor that efficient for water splitting			anode, is	expected to be the mo	ost

The evolution of H₂ and O₂ when a semiconductor is irradiated by simulated solar light at T = 25 °C at p_{atm} was recently studied. Using incident light with a power of $P = 1.0 \text{ kW m}^{-2}$ and a photoelectrode with a $S = 16 \text{ mm}^2$ surface area, the volume of H₂(g) produced after $\Delta t = 1$ hour of exposure was $V = 0.37 \text{ cm}^3$.

Thouse of exposure was 7 old 7 em .									
9. <u>Calculate</u> the power efficiency η_{direct} of the conversion.									
Calculation:									
$\eta_{ m direct}$ = $\%$									
If you could not calculate η_{direct} , the value $\eta_{\text{direct}} = 10\%$ can be used in the rest of the problem.									
Two modes of converting solar energy to hydrogen can thus be compared: direct photocatalysis and indirect photo-electrolysis combining a photovoltaic panel with an electrolyzer. The efficiency of photovoltaic panels on the market is around $\eta_{panels} = 20\%$.									
10. <u>Compare</u> the power efficiencies of the two modes, η_{direct} and η_{indirect} , using Fe ₂ O ₃ and P electrodes for the electrolysis.									
Calculation:									
\square $\eta_{ m direct} > \eta_{ m indirect}$ \square $\eta_{ m direct} pprox \eta_{ m indirect}$ \square $\eta_{ m direct} < \eta_{ m indirect}$									

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	12	Total
T3	Points	1	3	3	3	4	2	7	2	2	3	4	6	40
5%	Score													

Problem T3: About silver chloride

Data at 298 K:

 $pK_{s1}(AgCl) = 9.7; pK_{s2}(Ag_2CrO_4) = 12$

Formation constant of the complex $[Ag(NH_3)_n]^+$: $\beta_n = 10^{7.2}$

Potentials against the standard hydrogen electrode:

Standard potential of $Ag^+/Ag(s)$: $E^{\circ}(Ag^+/Ag(s)) = 0.80 \text{ V}$

Apparent potential of $O_2(aq)/OH^-(aq)$ (in seawater): $E'(O_2(aq)/OH^-(aq)) = 0.75 \text{ V}$

Part A: Quotes from a chemistry lesson by Louis Joseph Gay-Lussac

The following quotes from a chemistry lesson by Louis Joseph Gay-Lussac (French chemist and physicist, 1778–1850) deal with some properties of silver chloride.

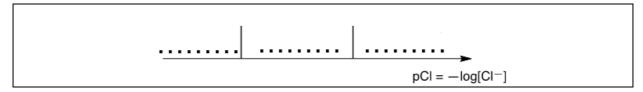
Quote A: "I will now talk about silver chloride, a milk-white solid. It is easily obtained by pouring hydrochloric acid into an aqueous solution of silver nitrate."

Quote B: "This salt has no taste since it is insoluble."

Quote C: "This compound is completely insoluble in alcohol and even in acids, except in concentrated hydrochloric acid which dissolves it readily."

Quote D: "On the other hand, silver chloride is highly soluble in aqueous solution of ammonia."

Quote E: "Then, we can make silver chloride appear again by adding an acid which reacts with ammonia."


Quote F: "If you take a bowl made of silver to evaporate salty seawater, you will get impure sodium chloride, mixed with a milk-white solid."

2. **Quote B:** Calculate the solubility s of AgCl(s) in water at 298 K in mol L^{-1} .

1. **Quote A:** Write the balanced chemical equation of AgCl(s) synthesis.

Calculation:		
	s =	$ m mol~L^{-1}$

3. **Quote C:** In a highly concentrated solution of chloride ions, a well-defined complex of stoichiometry 1:2 is formed. On the following qualitative axis (with pCl increasing from left to right), **place** on each dotted line the dominant silver-containing species. pCl values at frontiers are not expected.

Quote D: When ammonia is added to silver chloride, a well-defined complex of stoichiometry *n* is formed.

4. Write the balanced equation corresponding to the synthesis of the complex $[Ag(NH_3)_n]^+$ from silver chloride and <u>calculate</u> the corresponding equilibrium constant.

Equation:	
Calculation:	
	K =
	If you could not calculate K , the following value can be used in the rest of the problem: $K = 10^{-3}$

5. Ammonia is added to 0.1 mol of silver chloride in 1 L of water until the last grain of solid disappears. At this moment, $[NH_3] = 1.78 \text{ mol } L^{-1}$. **Determine** the stoichiometry of the complex neglecting dilution effects.

Calculation:	
	n =

6.	Write the balanced chemical equation corresponding to quote E.									
7.	Assuming that seawater is slightly basic and rich in dioxygen, and that silver metal can reduce dioxygen in such conditions, $\underline{\text{write}}$ a balanced chemical equation corresponding to the formation of the solid mentioned in $\underline{\text{quote F.}}$ A stoichiometric coefficient of 1 will be $\underline{\text{chosen for dioxygen}}$. $\underline{\text{Calculate}}$ its equilibrium constant K at 298 K.									
Equ	uation:									
Cal	culation:									
	K =									

Part B: The Mohr method

The Mohr method is based on the colorimetric titration of Cl⁻ by Ag⁺ in the presence of potassium chromate $(2K^+, CrO_4^{2^-})$. Three drops (~ 0.5 mL) of a K_2CrO_4 solution at about $7.76 \cdot 10^{-3}$ mol L⁻¹ are added to $V_0 = 20.00$ mL of a sodium chloride solution of unknown concentration C_{Cl} . This solution is then titrated by silver nitrate (Ag^+, NO_3^-) at $C_{Ag} = 0.050$ mol L⁻¹, which immediately leads to the formation of solid **A**. A red precipitate (solid **B**) appears at $V_{Ag} = 4.30$ mL.

8.	Write the balanced equations of the two reactions occurring during the experiment Calculate the corresponding equilibrium constants.
	$K^{\circ}{}_{1} =$
	$K^{\circ}{}_{2}$ =
9.	<u>Identify</u> the solids.
	Solid A:
	Solid B :
	<u>Calculate</u> the unknown concentration C_{Cl} of chloride ions in the sodium chloride solution culation:
Ca	culation:
	$C_{\rm Cl} = \mod \mathrm{L}^{-1}$
	If you could not calculate C_{Cl} , the value $C_{\text{Cl}} = 0.010$ mol L^{-1} can be used in the rest of the problem.

11. <u>Calculate</u> the minimal volume $V_{Ag}(min)$ for which AgCl(s) precipitates.							
Calculation:							
$V_{Ag}(\min) = mL$							
12. <u>Calculate</u> the residual concentration [Cl ⁻] _{res} of chloride ions when silver chromate begin to precipitate. <u>Justify</u> why CrO ₄ ²⁻ is a good titration endpoint indicator by comparing the							
two values.							
Calculation:							
$[Cl^-]_{res} = \qquad \qquad mol \ L^{-1}$							
CrO ₄ ²⁻ is a good titration endpoint indicator because:							
5104 15 a good diration enapoint indicator occause.							

Problem	Question	1	2	3	4	5	6	7	8	Total
T4	Points	6	9	8	5	6	2	2	12	50
7%	Score									

Problem T4: From gunpowder to the discovery of iodine

In the 19th century, French entrepreneur B. Courtois specialized in the production of nitrate **A** $(\mathbf{M_A}(\mathrm{NO_3})_m)$, used for gunpowder. Initially imported from Asia, **A** was later produced from nitrate **B** $(\mathbf{M_B}(\mathrm{NO_3})_n)$ using an exchange reaction with compound **C**, obtained from algae.

1.	<u>Determine</u> the formulas of nitrates A and B knowing that they are anhydrous salts of alkaline or alkaline-earth metal (M_A and M_B). One of the nitrates contains no more than 1 w% of non-metallic impurities while the other contains 9 \pm 3 w% of impurities. The content of metals M_A and M_B in the samples is 38.4 w% and 22.4 w% respectively. Support your answer with calculations.

A:

and **B**:

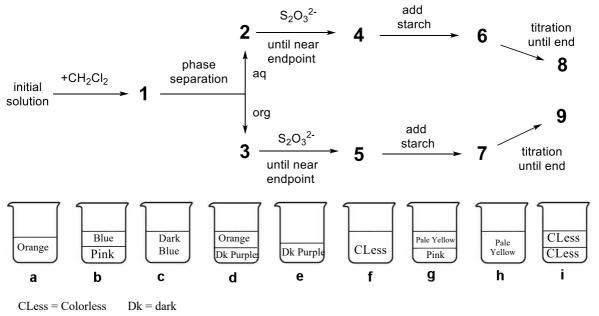
To obtain **A**, 262.2 g of solid compound **C** were added to the solution containing 442.8 g of **B**. **B** is known to be in excess. As a result, 190.0 g of white precipitate **D** were formed and removed by filtration. The filtrate was evaporated, and solid mixture **E** was isolated and heated until the mass of the sample (containing only nitrites, NO_2^-) was constant. The only gaseous product was dioxygen: 60.48 L at 0 °C and 1 atm (dioxygen can be considered as an ideal gas).

2.	Calculate the composition (in w% compounds A and B and no other in			
		w% of A :	and of	B:

3.	<u>Determine</u> the formul reaction between B and	as of compounds C and D and C .	d <u>write</u> the balanced equation for the
		C :	and D :
Re	action between B and C	:	

In 1811, when working with algae ashes, Courtois observed that copper containers wore out faster than usual. While he was studying this phenomenon, his cat entered the laboratory and spilled a solution of concentrated sulfuric acid on the dry algae ashes. Violet vapors appeared instantly (1, sulfuric acid is the oxidizing agent) and iodine (I₂) had just been discovered! Iodine was the cause of the copper corrosion (2). However, because of the medicinal applications of iodine, Courtois opened a new facility to produce it by reacting algae with chlorine (3). Nowadays, iodine is prepared from the following reactants: NO₃⁻, I⁻, H⁺ (4) or IO₃⁻, I⁻, H⁺ (5).

4. Write balanced equations for reactions 1–5.


1		
2		
3		
4		
5		

The solubility of iodine is very low in water, but significantly increases when iodide ions are added. Together they form ions such as triiodide, I₃⁻:

$$I^{-}(aq) + I_{2}(aq) \rightleftharpoons I_{3}^{-}(aq)$$
 (6)

Equilibrium (6) can be studied through the extraction of I_2 with dichloromethane. Indeed, I^- and I_3^- do not dissolve in organic solvents but I_2 does and, when extracted, it is 15 times more concentrated in dichloromethane than in water.

To determine the solubility of I_2 in dichloromethane, the following experiment was performed. To prepare the initial solution, a few crystals of solid iodine were dissolved in 50.0 mL of an aqueous solution of potassium iodide (0.1112 g). Then, 50.0 mL of dichloromethane were added and the mixture was vigorously shaken until equilibration. After phase separation, each phase was titrated by 16.20 mL (organic phase) and by 8.00 mL (aqueous phase) with a standardized aqueous solution of sodium thiosulphate pentahydrate (14.9080 g in 1.000 L of solution) in the presence of starch. The process is schematically represented below:

5. <u>Match</u> the the stages on the scheme (1–9) with the appropriate picture above (a–i).

Stages	Picture
1	
2	
3	
4	
5	
6	
7	
8	
9	

6.	Write balanced equations for the two possible chemical reactions in the aqueous phase
	during the titration that involve iodine-containing species and sodium thiosulphate.

7	Calculate the mas	ra of iodina i	god to propo	ra tha initia	1 colution
/.	Calculate the ma	ss of loutile t	iscu io picpa	ie uie iiiiua	i soiunon.

7.	<u>Calculate</u> the mass of iodine used to prepare the initi	al solution.	
	$m(I_2) =$	g	

8.	<u>Calculate</u> the equilibrium c	onstant K° for e	equilibrium of rea	action (6).	
				$K^{\circ} =$	

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	12	Total
T5	Points	3	4	4	2	5	5	4	3	5	2	2	2	41
8%	Score													

Problem T5: Azobenzene – β -cyclodextrin complexes for the formation of nanomachines

Nanomachines are molecular assemblies that enable the transformation of energy into nanomovement for applications such as drug delivery. Numerous nanomachines use light energy to isomerize azo compounds (R–N=N–R').

1. <u>Draw</u> the stereoisomers of azobenzene ($H_5C_6-N=N-C_6H_5$) and <u>draw</u> a line between the two carbon atoms in each structure that are the furthest apart. <u>Compare</u> these two distances (d_{trans} and d_{cis}).

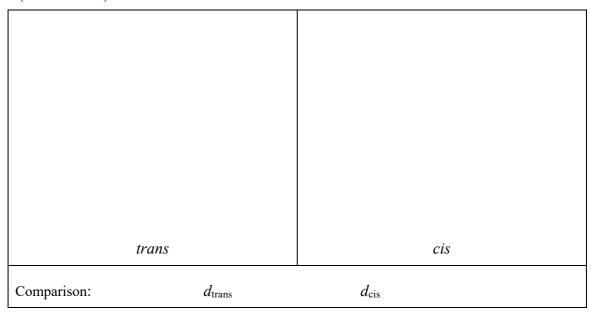


Fig. 1 – Possible reactants for the synthesis of M.

2. **M** can be synthesized in two steps from simple reactants (Fig. 1). <u>Choose</u> the reactants (N to Q) that can provide M with very high regioselectivity. Sodium nitrite (NaNO₂) in cold aqueous hydrochloric acid are used as reagents for the first step of the synthesis.

Reactants: and

Determination of the association constant K_t

 β -cyclodextrin (C, Fig. 2) is a cyclic heptamer of glucose which can form inclusion complexes with azo compounds. In tasks 3 to 6, using spectroscopy, we will determine the association constant K_t , corresponding to the formation of the inclusion complex CM_{trans} as depicted in Fig. 2.

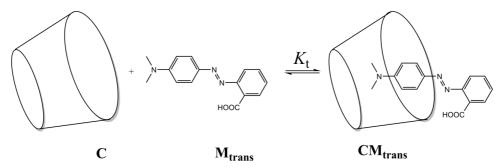


Fig. 2 – Formation of the CM_{trans} inclusion complex.

Several solutions were prepared by mixing C and M_{trans} in different proportions to reach initial concentrations $[C]_0$ and $[M_{trans}]_0$. While $[M_{trans}]_0$ is identical for all solutions, $[C]_0$ varies. We followed, at a fixed wavelength, the change in absorbance, ΔA , between the absorbance of each CM_{trans} solution and the pure M_{trans} solution. The molar extinction coefficients of CM_{trans} and M_{trans} , are noted as $\varepsilon_{CMtrans}$ and ε_{Mtrans} , respectively. L is the path length. The absorbance of C (ε_{C}) is negligible.

3. **Prove** mathematically that $\Delta A = \alpha \cdot [\mathbf{CM_{trans}}]$ and **express** α in terms of the constant(s) provided above.

Demonstration:	
	$\alpha =$

4.	<u>Prove</u> that, when C is in large excess with respect to M_{trans} (i.e. $[C]_0 >> [M_{trans}]_0$), the concentration of C may be considered as constant, $[C] \simeq [C]_0$.
Pro	of:
5.	Show that, when C is in large excess with respect to M_{trans} (i.e. $[C]_0 >> [M_{trans}]_0$),
	$\Delta A = \alpha \cdot \frac{\beta \cdot [C]_0}{1 + K_t \cdot [C]_0}$ and $\underline{\text{express}} \beta$ in terms of constant(s) and initial concentration(s).
De	monstration:
	eta=
	ho $-$

6. **Determine** K_t using the following experimental curve (Fig. 3).

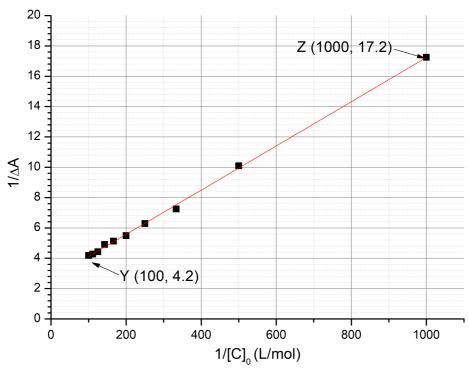
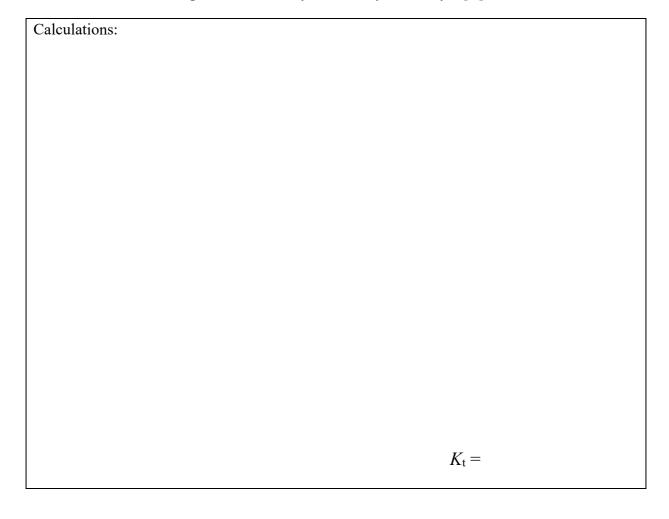



Fig. 3 – Evolution of $1/\Delta A$ as a function of $1/[C]_0$.

Determination of the association constant K_c

In tasks 7 to 9, using kinetic studies, we will determine the association constant, K_c , corresponding to the formation of the inclusion complex with $\mathbf{M_{cis}}$, $\mathbf{CM_{cis}}$. A sample containing only $\mathbf{M_{trans}}$ is irradiated and produces a known amount of $\mathbf{M_{cis}}$, $[\mathbf{M_{cis}}]_0$. $\mathbf{M_{cis}}$ (free or within the inclusion complex) then thermally isomerizes into $\mathbf{M_{trans}}$. In the absence of \mathbf{C} , the isomerization follows first-order kinetics with a rate constant k_1 . All complexation equilibria are faster than the isomerization process. The kinetic scheme corresponding to this experiment is provided in Fig. 4.

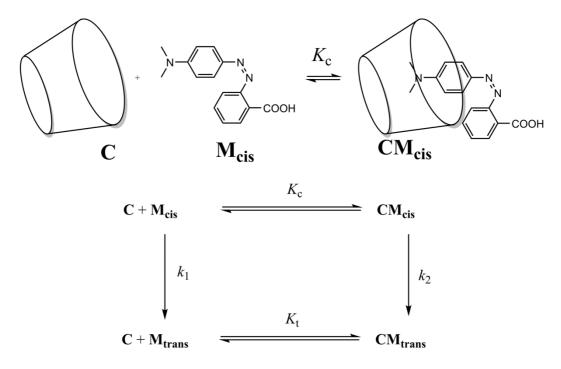


Fig. 4 – Kinetic scheme for the isomerization of M_{cis} in the presence of C.

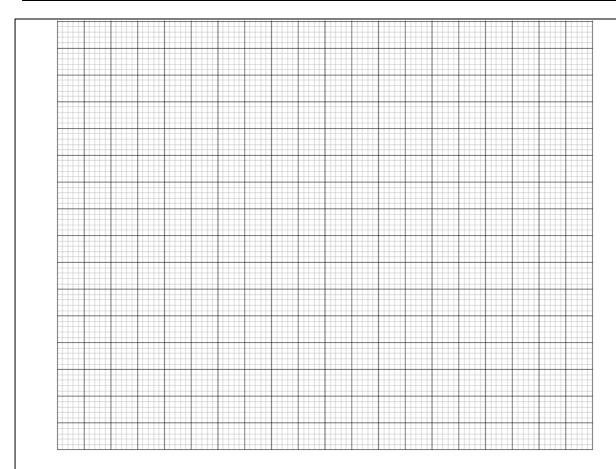
The rate of disappearance r for the total amount of \mathbf{M}_{cis} (free and complexed) is defined as

$$r = k_1[\mathbf{M_{cis}}] + k_2[\mathbf{CM_{cis}}]$$

Experimentally, r follows an apparent first order kinetic law with an apparent rate constant k_{obs} :

$$r = k_{\text{obs}}([\mathbf{M_{cis}}] + [\mathbf{CM_{cis}}])$$

7.	Show that k_{obs}	$= \frac{\gamma + \delta \cdot k_2[\mathbf{C}]}{1 + K_{\mathbf{C}}[\mathbf{C}]}$	and express	γ and δ in	terms	of known	constant(s).
----	----------------------------	--	-------------	--------------------------	-------	----------	--------------


	CL 1			
Demonstration:				
	A. —	and	S —	
	$\gamma =$	anu	0 –	

- 8. **Choose** the condition(s) where the half-life $(t_{1/2})$ corresponds to k_{obs} and **prove** mathematically that $t_{1/2}$ can be expressed as $t_{1/2} = \frac{\ln 2}{\gamma} (1 + K_{\text{c}}[\mathbf{C}]_0)$ given that $[\mathbf{C}]_0 \gg [\mathbf{M}_{\text{cis}}]_0$.
- \square Very slow isomerization of \mathbf{M}_{cis} within cyclodextrin
- \square Very slow isomerization of free M_{cis}
- \Box CM_{cis} very stable
- \Box CM_{trans} very stable

Proof:

9. Assuming the condition(s) in task 8 are satisfied, <u>determine</u> K_c by a linear regression using the data below. You may use a calculator or plot a graph.

$[\mathbf{C}]_0 \text{ (mol } \mathbf{L}^{-1})$	$t_{1/2}$ (s)	$[\mathbf{C}]_0 \text{ (mol } \mathbf{L}^{-1})$	$t_{1/2}$ (s)
0	3.0	$3.0 \cdot 10^{-3}$	5.9
$1.0 \cdot 10^{-4}$	3.2	$5.0 \cdot 10^{-3}$	7.7
$5.0 \cdot 10^{-4}$	3.6	$7.5 \cdot 10^{-3}$	9.9
$1.0 \cdot 10^{-3}$	4.1	$1.0 \cdot 10^{-2}$	12.6

Equation of the linear regression:

Formation of nanomachines

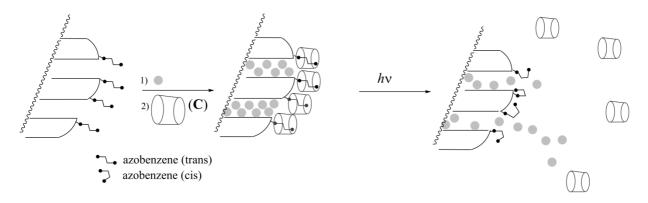


Fig. 5 – Cleavage of an azobenzene-cyclodextrin inclusion complex induced by a light-triggered isomerization, which allows delivery of a drug (grey sphere).

Another azobenzene compound (for which $K_c \ll K_t$), initially in the *trans* form, is covalently grafted on silica (Fig. 5). The silica pores are filled with a dye (rhodamine B, grey circles in Fig. 5). Upon addition of \mathbb{C} , an inclusion complex is formed, which blocks the pores and prevents the release of the dye.

10. <u>Choose</u> the most appropriate condition (one choice only) so that the pores are initially blocked in the presence of C, and the dye can be released upon irradiation.

$K_{\rm t} >> 1$
$K_{\rm t} >> 1$ and $K_{\rm c} << 1$
$K_{\rm t}/K_{\rm c} << 1$
$K_{\rm t} >> 1$ and $K_{\rm c} >> 1$
$K_{\rm c} \ll 1$

This azobenzene-silica powder loaded with a dye is placed in the corner of a cuvette (Fig. 6) so that this azobenzene powder cannot move into solution. The powder is irradiated at a wavelength λ_1 to trigger the release of the dye from the pores (Fig. 5). To monitor this release by absorbance spectroscopy we measure the absorbance of the solution at wavelength λ_2 .

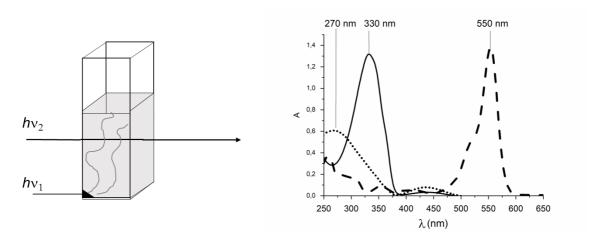


Fig. 6 – Left: experimental setup used to monitor the release of the dye; right: absorption spectra of trans-azobenzene (full line), cis-azobenzene (dotted line) and rhodamine B (dashed line).

11. **Determine** λ_1 .

$\lambda_1 =$	nm

12. **Determine** λ_2 .

$\lambda_2 =$	nm	

Problem	Question	1	2	3	4	5	6	7	8	9	Total
T6	Points	4	4	5	3	10	2	9	6	5	48
8%	Score										

Problem T6: Characterization of a block-copolymer

Block-copolymers, obtained by linking different polymers (blocks), have unique properties, such as the ability to self-assemble. In this problem, the synthesis and characterization of such a macromolecule are studied.

Study of the first block

In the first part, we will study the water soluble homopolymer 1 (α -methoxy- ω -aminopolyethyleneglycol).

The ¹H NMR spectrum of 1 (DMSO- d_6 , 60 °C, 500 MHz) includes the following signals:

Index	δ (ppm)	Peak Area
a	2.7*	0.6
b	3.3	0.9
С	3.4	0.6
d	~ 3.5	133.7

Table 1, *in the presence of D_2O , the signal at 2.7 ppm disappears.

1. **Match** the ¹H NMR signals (a, b, c, d) from Table 1 with each of the corresponding protons.

2. Express the average degree of polymerization n as a function of the area A_{OC2H4} of the NMR peak of the repeating unit and the area A_{OCH3} of the NMR peak of the methyl end group. Calculate n.

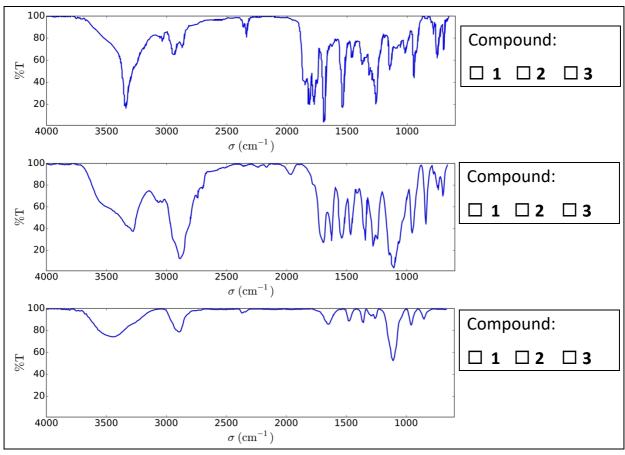
Expression: n = If you could not calculate n, the value n = 100 can be used in the rest of the problem.

Study of a diblock-copolymer

The synthesis of the second block of the copolymer is performed through the reaction of 1 with 2 (ε -(benzyloxycarbonyl)-lysine N-carboxyanhydride). This yields the block-copolymer 3.

$$O = \begin{pmatrix} H & H & O \\ NH & O \\ NH & NH \\ O & H \end{pmatrix}$$

$$2: C_{15}H_{18}N_2O_5, 306.3 \text{ g mol}^{-1}$$


$$O = \begin{pmatrix} O & O \\ NHCbz \end{pmatrix}$$

$$O = \begin{pmatrix} O & O \\ S^2 & O \\ S^2 & O \end{pmatrix}$$

3. <u>Draw</u> the reaction intermediate that is formed in the first step of the addition of 1 to 2. The second step of the mechanism leads to the formation of a gas molecule, G. <u>Draw</u> the structure of gas G.

<u> </u>	2		
Intermediate:			
		G :	

4. Infrared (IR) measurements were performed to characterize the compounds. <u>Match</u> the three IR spectra with compounds 1, 2 and 3.

5. The ¹H NMR spectrum of copolymer **3** (in DMSO- d_6 , at 60 °C, 500 MHz) is reported in Fig. 1. Using some or all of the NMR signals, the areas of which are reported in Table 2, **calculate** its average molar mass M_n , considering n from question 2. **Draw** a circle around the group(s) of atoms you used in the calculation and **label** it with the corresponding symbol(s) $(\alpha, \beta, ...)$.

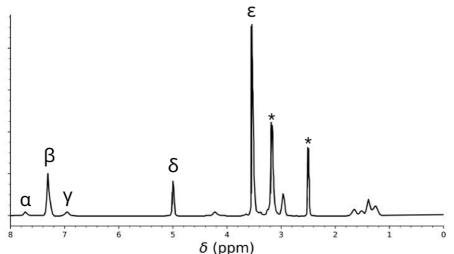
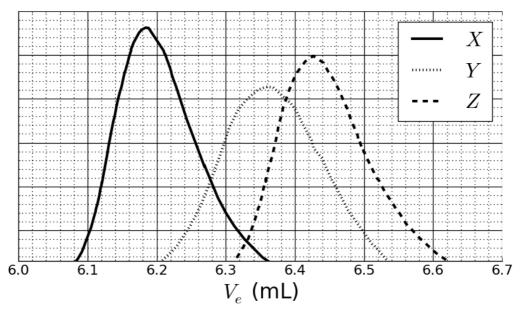


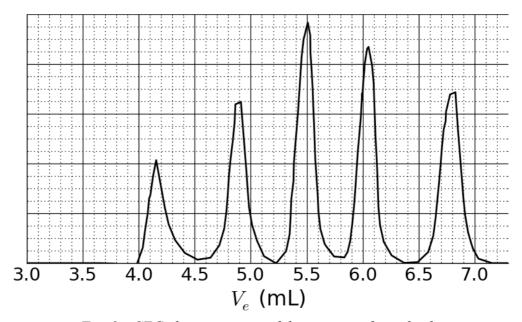
Fig. 1 – signals marked with * correspond to the solvent and water.

Table 2							
Peak	Area						
α	22.4						
В	119						
γ	23.8						
δ	47.6						
ε	622						

 $M_{\rm n} = {
m kg mol^{-1}}$ Provide your answer with two decimal places.

This reaction of 1 with 2 yielded the copolymers 3a (after 20 h), 3b (after 25 h), and 3c (after 30 h) at a temperature of 40 °C. Results of size-exclusion chromatography (SEC) experiments are presented in Fig. 2.




Fig. 2 – SEC chromatograms of 3a, 3b and 3c as a function of the elution volume, V_e .

6. Match the curves in Fig. 2 with the copolymers 3a, 3b and 3c.

3a:	$\square X$	$\square Y$	$\square Z$	
3b:	$\square X$	$\square Y$	$\square Z$	
3c:	$\square X$	$\square Y$	$\square Z$	

In order to calibrate the chromatogram, a mixture of standard polymers of known molar masses (3, 30, 130, 700 and 7000 kg mol⁻¹) were studied (Fig. 3).

The log value of the molar mass is a linear function of the elution volume, V_{e} .

Fig. 3 – SEC chromatogram of the mixture of standards.

7. Based on the SEC curves in Fig. 2 and 3, <u>determine</u> V_e of the polymer that corresponds to curve X and use it to <u>estimate</u> the degree of polymerization m of its second block. <u>Detail</u> your calculation; you may use a calculator or plot a graph.

=		nL								
										₽
-		 								
										_

Triblock copolymer synthesis

For biological applications involving the formation of micelles, a triblock copolymer 9 can be synthesized through the introduction of a middle block, **B**, using monomer 5.

9: A-B-C

$$\begin{array}{c|c}
 & CI \\
 MsCI: & O=S=O \\
 & CH_3
\end{array}$$

8. **Draw** the structures of **5**, **7** and **8**.

5 (the only product obtained is 6:A-B)

7 (you do not need to show the gas that is also formed in the third reaction of this sequence)

8

9. Amphiphilic block copolymers, such as **9: A-B-C**, can be used for medical applications, because they self-assemble into micelles in water (pH = 7), which can be used as drug carriers. **Assign** each block of the copolymer to a property. **Draw** a scheme of the micelle with only 4 polymer chains.

A: B: C:	☐ hydrophobic☐ hydrophobic☐ hydrophobic	□ hydrophilic □ hydrophilic □ hydrophilic	
	A W	В —	C
M _J	· ·		
m	\$		
1	W/\		

Problem T7: Ring motion in a [2]catenane

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	Total
T7	Points	4	12	2	2	2	5	5	8	4	5	5	54
6%	Score												

In 2016, the Nobel Prize in Chemistry was awarded to J.-P. Sauvage, Sir J. F. Stoddart and B. L. Feringa "for the design and synthesis of molecular machines". An example is [2]catenane, a molecule consisting of two interlocked rings. In this system, one macrocycle contains a single phenanthroline (bidentate) ligand and the second contains two ligands: a phenanthroline and a terpyridine (tridentate) ligand. A copper ion is coordinated by one ligand from each macrocycle. Depending on the oxidation state of the copper (+I or +II), two configurations are possible (Fig. 1).

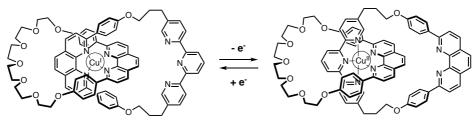


Fig. 1 – Multi-stability of a ring in a [2]catenane.

The synthesis of the macrocycle is the following:

$$A \qquad \qquad C \qquad$$

1. **<u>Draw</u>** the structure of **B**.

В			

2.	<u>Draw</u> the structures of E, F and G.
E	
F	
<u> </u>	
G	
3.	Out of the following the reaction conditions, choose which one(s) can produce E from D :
	H^+ , H_2O OH^- , H_2O
	NaBH ₄ , CH ₃ OH H ₂ , Pd/C, THF
4.	<u>Choose</u> from the following to complete the sentence: In the synthetic strategy, MsCl is used to obtain
	a leaving group a protecting group
	a deactivating group a directing group
5.	G is obtained by the reaction between F and LiBr in acetone. This reaction is:
	electrophilic aromatic substitution nucleophilic aromatic substitution
	$S_N 1$ $S_N 2$

6.	<u>Draw</u> the transition state of the rate-determining step for the reaction $\mathbf{F} \to \mathbf{G}$, showing the
	3D geometry. Depict only one reaction center. The main carbon chain can be represented
	as an R group.

Transition state:		

The synthesis of [2]catenane L uses the template effect of a copper complex:

7. Write the full electronic configuration of Cu(0) in its ground state. Give the oxidation state of Cu in complex J and write the electronic configuration of the Cu ion in J.

Electronic configuration of Cu(0):	
Oxidation state of Cu in J :	
Electronic configuration of Cu in J:	

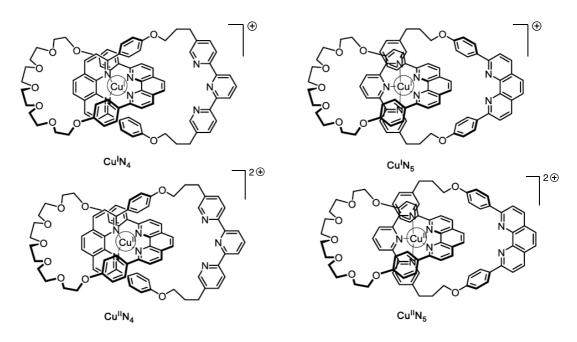
8. <u>Select</u> the geometry of the copper ion in L. Assuming an ideal geometry of the ligands around the copper center, <u>draw</u> the electronic levels of the d orbitals subject to the crystal field. <u>Fill</u> the orbital diagram. <u>Give</u> the maximum value of the spin (S) for this complex.

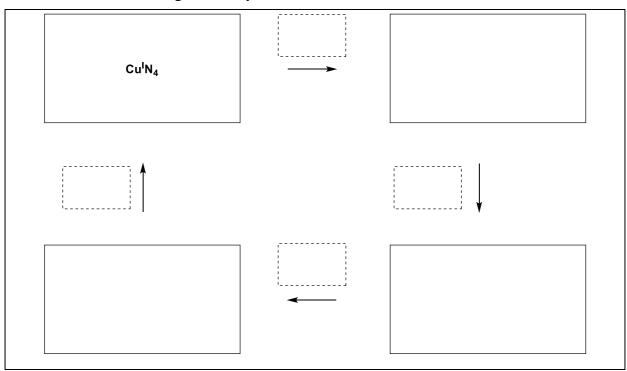
The geometry of Cu in L is:
□ Octahedral
☐ Tetrahedral
□ Square planar
☐ Trigonal bipyramid
Splitting and filling of d orbitals:
S =

9. Out of the following compounds, **choose** the one(s) that can remove the copper ion in L to obtain the free [2]catenane:

$$\begin{array}{c|c} \square & CH_3CN \\ \square & NH_4PF_6 \\ \square & KCN \\ \square & tren \end{array}$$

In [2]catenane L, the copper ion can exist in two oxidation states (+I) or (+II), and each of them exhibits a different coordination sphere (tetra- or penta-coordinated, respectively).




Fig. 2 - [2] catenane L states

The stability of Cu(I) complexes can be inferred by comparing their electronic structures to that of a noble gas.

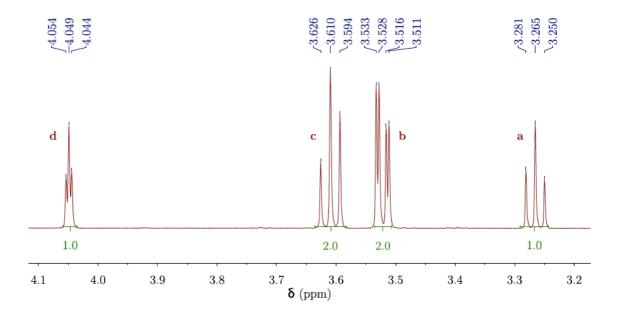
10. **Fill** in the blanks with a number and **check** the appropriate box:

The Cu ^I N ₄ complex has	electrons in the coordination sphere of the metal.
The Cu ^I N ₅ complex has	electrons in the coordination sphere of the metal.
The Cu ^I N ₄ complex is □ more	$/ \square$ less stable than the Cu^IN_5 complex.

11. Write the appropriate complexes from Fig. 2 in the solid boxes. Fill in the dashed boxes with one of the following symbols: (rotation); $+ e^-$; $- e^-$ to illustrate the electrochemical changes in the system.

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
T8	Points	2	6	2	2	11	2	4	3	4	2	6	8	2	6	4	64
6%	Score																

Problem T8: Identification and synthesis of inositols


In this problem, we define "3D structure" and "perspective formula" as indicated for β -glucose in the following figure.

Inositols are cyclohexane-1,2,3,4,5,6-hexols. Some of these 6-membered carbocycles, in particular *myo*-inositol, are involved in a number of biological processes.

Structure of myo-inositol

1. <u>Draw</u> the structure of an inositol without stereochemistry.
This family of molecules contains 9 different stereoisomers, including enantiomers.
2. <u>Draw</u> all 3D structures of the stereoisomers that are optically active.

The structure of a specific inositol, called myo-inositol is studied here. Only one of its chair conformers is significant and the structure can be deduced from its ^{1}H NMR spectrum. The spectrum below was obtained at 600 MHz in $D_{2}O$. No other signal from that compound was observed in the spectrum. The integration is indicated on the spectrum below each signal.

3. <u>Give</u> the molecular formula of the predominant compound (derived from *myo*-inositol) in this sample that is consistent with the number of protons observed in the ¹H NMR spectrum.

4. Based on the number and integrations of the proton signals, **give** the number of symmetry plane(s) that is(are) present in this molecule.

5. <u>Complete</u> the following perspective drawing of the most stable conformation of *myo*-inositol. Then <u>label</u> each hydrogen with the corresponding letter (a, b, c or d) according to the NMR spectrum above. Proton a must be on carbon a on the following representation. **Draw** its 3D structure.

Synthesis of inositols

For medicinal applications, it is useful to synthesize some inositol phosphates on a large scale. We will study the synthesis of inositol 2 from bromodiol 1.

6. Choose the correct structural relationship(s) between 2 and 3.

□ enantiomers	
□ epimers	
☐ diastereomers	
□ atropoisomers	

Inositol 2 can be obtained from compound 1 in 7 steps.

7.	7. <u>Draw</u> the 3D structure of 4.	
4	4	
8.	8. The reaction leading to 5 occurs on the double be Consider below the structure of 1-bromo-1,3-cycleric the double bond with the highest electron represent all of the electronic effects due to the bromaton of the electronic effects due to the electroni	lohexadiene, which is a portion of 4 density. Draw separate structures to
	Br	
9.	9. <u>Draw</u> the 3D structure of the major diastereomer 5 .	
5	5	
10.	10. <u>Give</u> the total number of stereoisomers of 5 possil from enantiopure compound 1 .	oly obtained by this synthesis, starting
11.	 For the step 5 → 6, another product with the same produced. <u>Draw</u> the 3D structures of 6 and 6'. 	molecular formula, denoted 6', can be
6	6	

12.	<u>Draw</u> the 3D structures of major diastereom	ners 8 and 9.
8		9
	Select the right set(s) of conditions labeled A	A to convert 9 to 2.
	H ₂ , Pd/C K ₂ CO ₃ , HF	
	HCOOH, H ₂ O BF ₃ ·OEt ₂	
14.	be obtained. If the stereoselectivity of the reather steps involved use the same number of economic of the steps involved use the same number of economic of the stereoselectivity of the readulation.	, in addition to 2, another stereoisomer would actions in the synthesis remains unchanged and quivalents as for the preparation of 2, <u>draw</u> the
Ctm	3D structure of this stereoisomer and select ucture:	its relationship with 2.
Sur	ucture:	
	enantiomers epimers	
	diastereoisomers	
	atropoisomers	
15.		step(s) that remove the <u>protecting</u> or <u>directing</u>
П	groups. $1 \rightarrow 4$	
	$4 \rightarrow 5$	
	$5 \rightarrow 6$	
	$6 \rightarrow 7$ $7 \rightarrow 8$	
	$ 8 \rightarrow 9 \\ 9 \rightarrow 2 $	
	<i>j</i> ¬ <u>L</u>	

Problem	Question	1	2	3	4	5	6	7	8	9	10	11	12	13	Total
Т9	Points	2	2	4	3	2	17	1	1	2	4	2	2	2	44
7%	Score														

Problem T9: Synthesis of levobupivacaine

Part I.

The local anesthetic bupivacaine (marketed as Marcaine) is on the World Health Organization List of Essential Medicines. Although the drug is currently used as a racemic mixture, it was demonstrated that one enantiomer of bupivacaine, levobupivacaine, is less cardiotoxic and, therefore, safer than the racemate. Levobupivacaine can be synthesized from the natural amino acid L-lysine.

$$CI^ H_3\dot{N}$$
 O^-

L-Lysine hydrochloride

1. <u>Assign</u> the absolute configuration of the stereogenic center in L-lysine hydrochloride and <u>justify</u> your answer by ranking the substituents in order of their priority.

Configuration:	Priority 1 > 2 > 3 > 4:
$\square R$	$NH_3^+_{CI}^ NH_3^+$ $COO^ NH_3^+$

2. The prefix L in L-lysine refers to relative configuration. **Choose** all correct statements:

- ☐ All natural L-amino acids are levorotatory.
- ☐ Natural L-amino acids can be levorotatory or dextrorotatory.
- \square All natural L-amino acids are (S).
- \square All natural L-amino acids are (R).

Often, we want only one of the amino groups in L-lysine to react. A Cu²⁺ salt with excess aqueous hydroxide can selectively mask the reactivity of one of the amino groups. After the complex is formed, only the non-complexed NH₂ group is available to react.

3. If L-lysine acts as a bidentate ligand and two L-lysines coordinate to one Cu²⁺ ion in the presence of aqueous hydroxide, <u>draw</u> the structure of the complex.

Complex

Similarly, in the synthesis of levobupivacaine shown below, only one amino group reacts without the use of a Cu^{2+} salt.

$$\begin{array}{c} \text{CI}^- \\ \text{H}_3\text{N} \\ \text{L-Lysine} \\ \text{hydrochloride} \\ \end{array} \begin{array}{c} \text{1) 1 eq. LiOH} \\ \text{2) 1 eq. PhCHO} \\ \end{array} \begin{array}{c} \text{A} \\ \end{array} \begin{array}{c} \text{1) NaOH, Cbz-Cl} \\ \text{2) diluted HCl} \\ \text{3) aqueous buffer} \\ \text{pH 6.2} \\ \end{array} \begin{array}{c} \text{B} \\ \text{C}_{14}\text{H}_{20}\text{N}_2\text{O}_4 \\ \text{3) aqueous buffer} \\ \text{pH 6.2} \\ \end{array} \\ \begin{array}{c} \text{NaNO}_2, \text{NaOAc} \\ \text{AcOH} \\ \text{C}_{16}\text{H}_{21}\text{NO}_6 \\ \end{array} \begin{array}{c} \text{C} \\ \text{NH}_2 \\ \text{DCC} \\ \end{array} \begin{array}{c} \text{D} \\ \text{2) TsCl, NEt}_3 \\ \end{array} \begin{array}{c} \text{E} \\ \text{C}_{29}\text{H}_{34}\text{N}_2\text{O}_6\text{S} \\ \end{array} \\ \begin{array}{c} \text{AcO} = \text{CH}_3\text{COO} \\ \end{array} \\ \begin{array}{c} \text{AcO} = \text{CH}_3\text{COO} \\ \end{array} \end{array} \begin{array}{c} \text{H}_2, \text{Pd/C} \\ \text{C}_{21}\text{H}_{28}\text{N}_2\text{O}_4\text{S} \\ \text{reactive intermediate} \\ \end{array} \begin{array}{c} \text{C}_{18}\text{H}_{28}\text{N}_2\text{O} \\ \end{array} \\ \begin{array}{c} \text{C}_{18}\text{H}_{28}\text{N}_2\text{O} \\ \end{array} \end{array} \begin{array}{c} \text{CI} \\ \text{NEt}_3 \\ \end{array} \begin{array}{c} \text{C}_{18}\text{H}_{28}\text{N}_2\text{O} \\ \end{array} \end{array} \begin{array}{c} \text{CI} \\ \text{OC} \\ \end{array} \\ \begin{array}{c} \text{Charting photostation} \\ \text{Charting photosta$$

From this point on, you can use the abbreviations proposed in the scheme above.

4. **<u>Draw</u>** the structure of compound **A**, including the appropriate stereochemistry.

\mathbf{A}

5. The transformation of L-lysine into **A** is (**choose** proper answer(s)):

an enantioselective reaction.
an enantiospecific reaction.
a regioselective reaction.

6.	Draw the structures of	of compounds B	-F, including	the appropriate	stereochemistry.
----	-------------------------------	----------------	---------------	-----------------	------------------

$\mathbf{B} \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{N}_2 \mathrm{O}_4$	C C ₁₆ H ₂₁ NO ₆
D	E C ₂₉ H ₃₄ N ₂ O ₆ S
F C ₂₁ H ₂₈ N ₂ O ₄ S	
211120112040	

7	Select the	role of I	CC in t	he transf	formation	$C \rightarrow D$
/.	Select the	roie oi i	ハしーロロ	ne transi	ormation	$U \rightarrow U$

Protecting group for the amino group.
Protecting group for the hydroxy group.
Activating agent for the amide bond formation.

8. <u>Choose</u> the appropriate phrase to comple enable	te the sentence: TsCl is used in the synthesis to
☐ Nucleophilic substitution of an amino group.☐ Electrophilic substitution of an amino group.	
☐ Nucleophilic substitution of a hydroxy group.☐ Electrophilic substitution of a hydroxy group.	
9. Mark all possible reagents that could be u	
☐ diluted HCl ☐ K ₂ CO ₃	□ Zn/HCl □ H ₂ SO ₄
☐ diluted KMnO ₄ ☐ SOCl ₂	☐ diluted NaOH ☐ PCl ₅
10. <u>Draw</u> the structure of levobupivacaine, in	cluding the appropriate stereochemistry.
Levobupivacaine C ₁₈ H ₂₈ N ₂ O	
	use of enantiomerically pure L-lysine. A common amino acids is their transformation into amides (5) isomer below).
	CF ₃
но	
(S)-Mos	sher's acid
11. <u>Draw</u> the structure of the amide formed with (S)-Mosher's acid. Clearly show the stereo	hen the α -amino group of L-lysine is reacted with schemistry of each chiral center.

12. <u>Indicate</u> how many products will be formed from racemic lysine and (S)-Mosher's acid (consider that only the α -amino group of lysine is derivatized)?
☐ Two diastereoisomers.
☐ Four diastereoisomers.
☐ A racemic mixture of two enantiomers.
☐ Four compounds: two enantiomers and two diastereoisomers.
13. <u>Choose</u> the method(s) which can be used to quantitatively determine the enantiomeric purity of lysine after its derivatization with (S)-Mosher's acid:
□ NMR spectroscopy.
☐ Liquid chromatography.
☐ Mass spectrometry.
☐ UV-vis spectroscopy.